Как разогнать процессор если пишет CURRENT, POWER LIMIT

Содержание

Особенности разгона современных процессоров Intel для LGA1150

Возможность разгона процессоров уже многие годы является их неотъемлемой частью. Конечно, с ростом производительности эта процедура стала менее востребованной, но своей актуальности все же не утратила. Центральный процессор до сих пор остается основным компонентом ПК, в связи с чем остальные комплектующие в системе очень сильно зависят от его быстродействия. Причем, чем выше уровень конфигурации, тем сильнее сказывается эта зависимость. Вторая причина, заставляющая пользователей смотреть в сторону разгона процессора, заключается в недостаточной оптимизации программного обеспечения. Так, купив многоядерный процессор, вы еще не гарантируете обеспечение максимальной производительности. Например, в играх не редки случаи, когда модель с меньшим количеством ядер, но большей частотой, показывает лучшие результаты, чем ее более дорогой аналог.

Таким образом, чтобы там не говорили скептики, оверклокинг на сегодняшний день не является просто развлечением, а несет реальную практическую пользу. В этих словах мы уже неоднократно убеждались, тестируя процессоры разной производительности. Однако в рамках обычного обзора трудно рассказать обо всех нюансах, касающихся процесса оптимизации параметров. Поэтому данному вопросу мы решили посвятить отдельный материал, вернее сказать, цикл материалов. Первой его частью станет эта статья, где мы постараемся в полной мере раскрыть особенности разгона современных процессоров компании Intel. Речь пойдет о моделях, основанных на микроархитектуре Intel Haswell: семействах Intel Haswell, Intel Haswell Refresh, Intel Devil’s Canyon и Intel Haswell-E.

Способы разгона

Суть оптимизации параметров процессора в подавляющем большинстве случаев сводится к увеличению его тактовой частоты. В современных решениях от Intel она вычисляется по формуле:

CPU Freq = CPU Ratio × CPU Cores Base Freq

  • CPU Freq − частота процессора;
  • CPU Ratio − процессорный множитель;
  • CPU Cores Base Freq − базовая частота процессорных ядер.

В связи с этим можно выделить три основные способа их разгона:

  • путем изменения процессорного множителя;
  • путем изменения опорной частоты;
  • путем одновременного изменения процессорного множителя и опорной частоты.

Во время оверклокинга также требуется настройка массы дополнительных параметров, затрагивающих работу не только самого процессора, но и других структурных узлов ПК (подсистемы оперативной памяти, чипсета, слотов расширения, интерфейсов). Более того, нужно постоянно отслеживать основные показатели всей конфигурации и на каждом этапе проверять стабильность ее функционирования.

Чтобы избавить пользователя от большинства из этих обязанностей, производители материнских плат предлагают инструменты автоматического разгона процессоров.

Как правило, они реализованы на уровне драйвера.

. или же доступны в виде специального раздела в меню BIOS.

В некоторых случаях для этих целей даже предусмотрена специальная группа кнопок, распаянных непосредственно на текстолите.

Вроде бы, основная цель достигнута − производительность процессора увеличена, и на этом материал можно заканчивать. Но у автоматического способа разгона есть много недостатков, которые выявляются в процессе повседневной эксплуатации. Во-первых, он нередко завышает многие параметры для обеспечения стабильной работы системы, тем самым излишне нагружая другие компоненты ПК. В результате конфигурация потребляет больше энергии, требует лучшего охлаждения и издает дополнительный шум. Во-вторых, материнская плата содержит лишь несколько профилей оверклокинга. Поэтому разогнать процессор до той отметки, которая требуется именно вам, не всегда получится. Придется довольствоваться только значениями, предусмотренными производителем. Более того, в некоторых случаях у системы может попросту не получиться подобрать необходимые параметры (например, при использовании решения с заблокированным множителем) и никакого ощутимого прироста от процедуры оверклокинга вы не получите. В-третьих, использование определенных функций вместе с автоматическим разгоном может быть затруднено. Особенно это касается тонкой настройки режимов энергосбережения. В-четвертых, в автоматическом режиме вы никогда не сможете достичь тех показателей и результатов, которые будут продемонстрированы при ручной оптимизации параметров.

Исходя из этого, мы рекомендуем отказаться от автоматического способа оверклокинга в пользу ручного. Однако для начала потребуются определенные знания о принципе работы процессора и подконтрольных ему узлов, а также способы его взаимодействия с другими комплектующими. Об этом мы поговорим в следующем разделе.

Особенности функционирования современных процессоров Intel. Анализ работы структурных элементов, задействованных во время процедуры разгона

Более детально об особенностях микроархитектуры Intel Haswell и Intel Haswell-E можно узнать, перейдя по соответствующим ссылкам. Здесь же внимание будет акцентировано на структурных элементах, касающихся разгона.

Самым главным из них является базовая (или опорная) частота тактового генератора (BCLK), которая по умолчанию равна 100 МГц. Как видно из схемы, все узлы процессора (процессорные ядра, кэш-память последнего уровня, встроенное графическое ядро, кольцевая шина, контроллеры памяти, шин PCI Express и DMI) так или иначе с ней связаны. Поэтому любое изменение опорной частоты неминуемо отразится на их работе. Причем, если процессорные ядра без проблем переносят такую процедуру, то другие узлы процессора и компоненты ПК могут терять стабильность своего функционирования при значении базовой частоты, которое всего лишь на несколько мегагерц превышает отметку в 100 МГц. Иными словами, разгон процессора по базовой частоте, по сути, просто лимитируется остальными узлами системы.

Чтобы решить сложившуюся проблему, в микроархитектуру Intel Haswell было внедрено понятие CPU Strap − множитель опорной частоты процессорных ядер. Таким образом, имеем следующее:

CPU Cores Base Freq = CPU Strap × BCLK Freq

  • CPU Cores Base Freq − базовая частота процессорных ядер;
  • CPU Strap − множитель опорной частоты процессорных ядер;
  • BCLK Freq − опорная частота BCLK.

Как правило, для параметра CPU Strap доступны четыре значения: 1,00; 1,25; 1,66 и 2,5. Но и их хватит с головой для максимального разгона процессора по опорной частоте. Поскольку при стандартном значении BCLK (100 МГц) базовая частота процессорных ядер может достигать 250 МГц при использовании максимального множителя CPU Strap. То есть теоретически скорость процессора можно увеличить в 2,5 раза, не меняя его множителя. Владельцы решений из серий Intel Sandy Bridge / Ivy Bridge о таком могли только мечтать.

Правда, потенциальным покупателям современных моделей на основе микроархитектуры Intel Haswell тоже не стоит сильно обольщаться. Параметр CPU Strap доступен только для процессоров с разблокированным множителем (с индексом «K» в конце названия). Иными словами, обычные решения в данном случае тоже не смогут похвастать большим оверклокерским потенциалом − максимум +5. +10 МГц к опорной частоте BCLK без потери стабильности работы всей системы, что даст прибавку в скорости в виде дополнительных 150 − 400 МГц в зависимости от процессорного множителя.

Отметим, что параметр CPU Strap можно использовать двумя способами. В первом случае его значение фиксируется вручную, а во втором − подбирается автоматически материнской платой на основе желаемой базовой частоты опорных ядер процессора. Допустим, мы хотим, чтобы наша частота CPU Cores Base Freq была равна 150 МГц. На основе этого значения материнская плата сама определит, что параметр CPU Strap нужно зафиксировать на уровне 1,66, что даст нам скорость BCLK (BCLK Freq) на уровне 90,3 МГц (150 МГц / 1,66 = 90,3 МГц). Правда, стоит понимать, что стабильная работа системы при этом тоже не гарантируется. Зато так проще производить оптимизацию, поскольку фактически мы меняем только один параметр (скорость работы процессорных ядер). Тогда как в ручном режиме придется производить манипуляцию уже с двумя настройками (CPU Strap и базовая частота BCLK).

Теперь давайте вкратце пройдемся по узлам процессора и комплектующим ПК, скорость работы которых тактируется базовой частотой BCLK. Самыми чувствительными к изменению этого значения являются встроенные в процессор контроллеры памяти, линий PCI Express и шины DMI, служащие для «общения» с внешними компонентами системы (оперативной памятью, картами расширения и чипсетом соответственно). Поэтому очень важно позаботиться об их стабильной работе. Достигается это с помощью увеличения напряжения питания на конкретных узлах, а также путем отключения энергосберегающих технологий (более детально об этом читайте в следующих разделах).

В современных процессорах часто на кристалле распаивается графическое ядро. Скорость его работы рассчитывается по формуле:

iGPU Freq = iGPU Ratio × BCLK Freq / 2

  • iGPU Freq − частота встроенного графического ядра;
  • iGPU Ratio − множитель встроенного графического ядра;
  • BCLK Freq − опорная частота BCLK.

Из-за архитектурных особенностей, встроенное графическое ядро чуть лучше «переваривает» повышенные значения базовой частоты BCLK, особенно при увеличении напряжения на нем. Однако в большинстве случаев в составе современных ПК используется дискретная видеокарта, в связи с чем встроенная графика автоматически деактивируется. Тем самым убирается один из компонентов, который может лимитировать разгон процессора. Еще одной положительной стороной отказа от использования iGPU является снижение нагрева процессора. К примеру, разгон встроенного графического ядра Intel HD Graphics 4600 с номинальных 1250 МГц до 1700 МГц приводит к росту энергопотребления модели Intel Core i7-4770K в среднем на 40 Вт.

Для расчета скорости оперативной памяти используется следующая формула:

Memory Freq = Memory Ratio × BCLK Freq × Memory Strap

  • Memory Freq − частота оперативной памяти;
  • Memory Ratio − множитель оперативной памяти;
  • BCLK Freq − опорная частота BCLK;
  • Memory Strap − делитель между опорной частотой и скоростью работы оперативной памяти.

Как видим, в данном случае мы также имеем два множителя (или делителя, смотря относительно каких величин анализировать). Первый (Memory Ratio) задает непосредственно коэффициент умножения для скорости подсистемы оперативной памяти. Второй же (Memory Strap) указывает на соотношение опорной частоты BCLK к базовой частоте модулей оперативной памяти. По сути, этот параметр является аналогом CPU Strap, только для оперативной памяти. Правда, в данном случае доступно уже меньше значений (в основном только 1,00 и 1,33). Использование значения 1,33 позволяет устанавливать более низкий множитель (Memory Ratio) и запускать память с меньшими таймингами. Таким способом можно улучшить показатели при прохождении определенных синтетических тестов, критических к задержкам модулей. Но с другой стороны, от этого страдает стабильность работы всего ПК. Поэтому при разгоне процессора оптимальное соотношение опорной частоты BCLK к базовой скорости планок оперативной памяти все же будет 1,00.

Последним важным структурным компонентом, напрямую зависящим от опорной частоты BCLK, является блок Uncore, объединяющий в себе кольцевую шину и кэш-память последнего уровня процессора. В микроархитектуре Intel Haswell их пропускная способность существенно увеличена (примерно в 2 раза), поэтому нет больше необходимости использовать модуль Uncore на высоких частотах. Кроме того, разработчики добавили возможность управлять его работой независимо от процессорных ядер. То есть эти два структурных блока (стек физических ядер и кэш-память) могут функционировать на разных частотах. Большинство оверклокеров сходятся во мнении, что при сильном разгоне процессора, скорость Uncore лучше устанавливать примерно на 300 − 500 МГц меньше частоты самого процессора. Хотя в некоторых синтетических бенчмарках синхронизация этих показателей, наоборот, позволяет добиться более высоких результатов. Как бы там ни было, нужно помнить, что оптимизация на уровне скорости блока Uncore осуществляется не для достижения стабильности работы системы после разгона процессора, а для увеличения показателей производительности.

Расчет частоты кольцевой шины и скорости кэш-памяти осуществляется по следующей формуле:

Uncore Freq = Uncore Ratio × BCLK Freq

  • Uncore Freq − скорость работы модуля Uncore;
  • Uncore Ratio − множитель частоты работы модуля Uncore;
  • BCLK Freq − опорная частота BCLK.

Особенности регулятора питания современных процессоров Intel. Анализ напряжений, которые используются во время процедуры разгона

Изменение схемы работы структурных узлов процессора, как правило, требует корректировки их рабочих напряжений. То же самое касается остальных комплектующих, находящихся в тесной связи с процессором (оперативная память и чипсет). Можно, конечно, положиться на материнскую плату и предоставить ей возможность в автоматическом режиме подобрать необходимые значения. Но, опять же, такая оптимизация будет далека от оптимальной и не позволит добиться максимальных результатов разгона.

Поэтому рекомендуем запастись терпением и разобраться в электротехнической части процессоров, основанных на микроархитектуре Intel Haswell.

Как видно из представленной выше схемы, их ключевой особенностью является отказ от полностью внешнего регулятора питания, ведь часть его перекочевала внутрь процессора (iVR). Теперь на входе процессора модуль VRM (расположен на материнской плате) формирует одно напряжение Vccin, которое в дальнейшем превращается в номиналы, необходимые для питания конкретных узлов. Такое техническое решение позволило увеличить качество выходных напряжений (в частности, уменьшить пульсации) и повысить эффективность самого преобразователя. С другой стороны, iVR занимает часть полезного пространства на кристалле и продуцирует дополнительное тепло. Но это уже особенности микроархитектуры Intel Haswell, которые не имеют прямого отношения к процедуре разгона процессора.

Итак, какие же нам напряжения пригодятся во время оптимизации параметров современных решений от Intel? Для лучшей наглядности приведем их в виде списка:

  • Vccin (VRIN) − входное напряжение питания процессора;
  • Vcore − напряжение питания на ядрах процессора;
  • Vring (Vuncore, Vcache) − напряжение питания на модуле Uncore (кольцевой шине и кэш-памяти последнего уровня);
  • Vigpu (Vgfx) − напряжение питания на встроенном в процессор графическом ядре;
  • Vsa (VCCSA) − напряжение питания на системном агенте, которое, по сути, является напряжением питания на контроллере памяти (используется при увеличении скорости работы подсистемы оперативной памяти);
  • Vioa / Viod − напряжения питания на узлах, связанных с работой встроенного контроллера памяти (используются при увеличении скорости работы подсистемы оперативной памяти);
  • Vddq (Vdram) − напряжение питания на модулях оперативной памяти.

Разбираемся с настройками меню BIOS

На наш взгляд, наиболее удобным и универсальным инструментом для разгона процессора является меню BIOS, поскольку программное обеспечение, работающее в среде операционной системы, имеет сравнительно ограниченный функционал.

В данном разделе мы постараемся по максимуму осветить настройки BIOS, которые могут пригодиться во время оверклокинга, а также дать конкретные рекомендации по выбору значений для тех или иных параметров. Хотим обратить ваше внимание, что основной акцент сделан на разгоне процессора, а процедуре оптимизации параметров той же самой подсистемы оперативной памяти будет посвящена отдельная статья. Ну и напоследок хочется сказать, что приведенные ниже рекомендации в основном касаются неэкстремального оверклокинга с применением традиционных систем охлаждения (воздушный кулер, СВО).

Настройки, касающиеся частоты работы структурных узлов процессора и сопутствующих комплектующих

Если после входа в BIOS загрузилось упрощенное меню, советуем сразу же переключиться в расширенный режим. Это сделает доступными все настройки, касающиеся разгона комплектующих и мониторинга основных показателей состояния системы. Как правило, интересующие нас опции группируются на отдельных вкладках, носящих характерные названия: «OC Tweaker» (ASRock), «Extreme Tweaker» (ASUS), «M.I.T.» (GIGABYTE), «OC» (MSI).

Здесь и далее в таблице приводятся названия настроек, которые наиболее часто встречаются в меню BIOS материнских плат. Для более детального ознакомления с возможностями каждой опции предлагаем посетить наш справочник по настройкам BIOS.

Рекомендации по использованию

BCLK Frequency (ASUS), BCLK/PCIE Frequency (ASRock), Host/PCIe Clock Frequency (GIGABYTE), CPU Base Clock (MSI)

Задает базовую (опорную) частоту BCLK

Подобрать такое значение, при котором система сохраняет стабильность своей работы и показывает максимальную производительность.

CPU Core Ratio (ASUS / GIGABYTE), CPU Ratio (ASRock), Adjust CPU Ratio (MSI)

Задает процессорный множитель

Подобрать такое значение, при котором система сохраняет стабильность своей работы и показывает максимальную производительность.

Если материнская плата позволяет задать максимальный множитель для каждого ядра отдельно, рекомендуем во всех случаях устанавливать одинаковые значения (синхронизировать скорость всех ядер).

CPU Strap (ASUS), Processor Base Clock / Gear Ratio (GIGABYTE), Adjust CPU Base Clock Strap

Задает делитель между опорной частотой BCLK и базовой частотой процессорных ядер

Для неэкстремального разгона, как правило, можно ограничиться значениями [1,00] и [1,25]. Поскольку, чем больше значение базовой частоты процессорных ядер, тем меньший процессорный множитель удастся выставить до появления проблем со стабильностью работы системы.

CPU Base Clock (GIGABYTE)

Изменяет опорную частоту процессорных ядер

Данная настройка доступна не на всех платах. Суть ее заключается в том, что вы изначально меняете только опорную частоту процессорных ядер, а такие параметры как скорость BCLK и делитель CPU Strap подбираются автоматически. Такой способ является более удобным и простым, поэтому если в меню BIOS присутствует соответствующая опция, рекомендуем ею воспользоваться.

Max. CPU Cache Ratio (ASUS), CPU Cache Ratio (ASRock), Uncore Ratio (GIGABYTE), Adjust Ring Ratio (MSI)

Устанавливает множитель частоты модуля Uncore (кольцевой шины и кэш-памяти последнего уровня)

Значение стоит подбирать так, чтобы в случае незначительного разгона процессора частота работы модуля Uncore была примерно на 0 − 300 МГц меньше скорости процессорных ядер, а при сильном разгоне − меньше на 300 − 500 МГц.

DRAM Frequency (ASRock / ASUS, MSI)

Задает скорость работы оперативной памяти

Подобрать такое значение, при котором система сохраняет стабильность своей работы и показывает максимальную производительность. Обращаем ваше внимание, что список значений формируется автоматически на основе множителей, которые используются при расчете скорости оперативной памяти. Причем последние не всегда доступны для регулировки.

System Memory Multiplier (GIGABYTE)

Задает множитель базовой частоты оперативной памяти

По сути, то же самое, что и настройка DRAM Frequency, только в этом случае скорость оперативной памяти задается не простым выбором частоты, а путем установки необходимого множителя. При этом материнская плата сразу же показывает расчетную скорость модулей.

BCLK Frequency: DRAM Frequency Ratio (ASUS), DRAM Reference Clock (MSI)

Задает делитель между опорной частотой BCLK и базовой частотой оперативной памяти

Используется для точной настройки частоты оперативной памяти во время разгона. Также может пригодиться для достижения рекордных результатов в специфических синтетических тестах.

В обычной же ситуации рекомендуем использовать значение

Max. CPU Graphics Ratio (ASUS), Adjust GT Ratio (MSI)

Задает множитель базовой частоты встроенного графического ядра

Подобрать такое значение, при котором система сохраняет стабильность своей работы и показывает максимальную производительность. Если использование встроенной графики не планируется, лучше оставить значение

GT Frequency (ASRock), Processor Graphics Clock (GIGABYTE)

Задает частоту встроенного графического ядра

Используется для тех же целей, что и опции Max. CPU Graphics Ratio (ASUS), Adjust GT Ratio (MSI). Разница кроется лишь в том, что здесь частота задается не через множитель, а явно.

Если использование встроенной графики не планируется, лучше оставить значение

Настройки, касающиеся напряжений, которые используются для корректной работы структурных узлов процессора и сопутствующих комплектующих

Перед тем, как перейти к непосредственному анализу настроек, стоит отметить, что напряжения питания на большинстве материнских плат могут задаваться несколькими способами:

  • В автоматическом режиме, когда значения устанавливаются по умолчанию.
  • В ручном режиме, когда точное значение напряжения питания вводится вручную.
  • В offset-режиме, когда точное значение напряжения питания задается вручную с помощью offset-параметра (величина, на которую будет увеличено/уменьшено номинальное напряжение питания).
  • В адаптивном режиме, когда напряжение питания задается вручную с помощью offset-параметра и/или специально отведенной для этих целей опции. При этом оно может динамически меняться в зависимости от частоты работы узла и характера текущей нагрузки на него для улучшения стабильности работы системы или уменьшения энергопотребления. Данный способ рекомендуем использовать для постоянной работы с разогнанным процессором, после того как в ручном режиме уже были подобраны оптимальные настройки.

Для некоторых напряжений питания доступен только один способ их регулировки, для других − сразу все четыре. Какой из них использовать, зависит только от ваших личных предпочтений и возможностей материнской платы. Мы же для упрощения в таблице укажем названия лишь для ручного способа (исключением являются те опции, для которых предусмотрен только offset-режим) установки значений напряжения питания.

Рекомендации по использованию

CPU Input Voltage (ASRock / ASUS), CPU VRIN External Override (GIGABYTE), VCCIN Voltage (MSI)

Задает входное напряжение питание процессора (Vccin / VRIN)

Данное значение всегда должно быть выше остальных напряжений питания, использующихся узлами процессора. В большинстве случаев для неэкстремального оверклокинга достаточно значения, лежащего в пределах 1,7 − 2,0 В. Для использования разогнанного процессора на постоянной основе рекомендуем не превышать отметки 2,2 В.

CPU Core Voltage Override (ASUS), Vcore Override Voltage (ASRock), CPU Vcore Voltage (GIGABYTE), CPU Core Voltage (MSI)

Задает напряжение питания на процессорных ядрах (Vcore)

В большинстве случаев для неэкстремального оверклокинга достаточно значения, лежащего в пределах 1,10 − 1,35 В. Для использования разогнанного процессора на постоянной основе рекомендуем не превышать отметки 1,38 В.

CPU Cache Voltage Override (ASUS), CPU Cache Override Voltage (ASRock), CPU RING Voltage (GIGABYTE, MSI)

Задает напряжение питания на модуле Uncore: кольцевой шине и кэш-памяти последнего уровня (Vring / Vuncore / Vcache)

Поднятие этого напряжения питания даже без увеличения частоты Uncore часто помогает достигнуть стабильной работы процессора при разгоне. В большинстве случаев для неэкстремального оверклокинга достаточно значения, лежащего в пределах 1,10 − 1,25 В. Для использования разогнанного процессора на постоянной основе рекомендуем не превышать отметки 1,30 В.

CPU Graphics Voltage Override (ASUS), GT Voltage Offset (ASRock), CPU Graphics Voltage (GIGABYTE), CPU GT Voltage (MSI)

Задает напряжение питания на встроенном в процессор графическом ядре (Vigpu / Vgfx)

Следует изменять только в случае разгона встроенного в процессор графического ядра. Как правило, достаточно значения, лежащего в пределах 0,90 − 1,35 В. Дальнейшее увеличение напряжения не оправдано, поскольку практически не влияет на стабильность работы iGPU на высоких частотах.

CPU System Agent Voltage Offset (ASUS / GIGABYTE), System Agent Voltage Offset (ASRock), CPU SA Voltage Offset (MSI)

Задает напряжение питания на системном агенте, которое, по сути, является напряжением питания на контроллере памяти (Vsa / VCCSA)

Используется при увеличении скорости работы подсистемы оперативной памяти. Если акцент делается на разгоне процессора, то рекомендуем устанавливать значение

CPU Analog I/O Voltage Offset (ASRock / ASUS / GIGABYTE / MSI)

Задает напряжения питания на узлах, связанных с работой встроенного контроллера памяти (Vioa / Viod)

Используется при увеличении скорости работы подсистемы оперативной памяти. Как показывает практика, в обоих случаях лучше оставлять значение

CPU Digital I/O Voltage Offset (ASRock / ASUS / GIGABYTE / MSI)

DRAM Voltage (ASRock / ASUS / GIGABYTE / MSI)

Задает напряжение питания на модулях оперативной памяти

Используется при увеличении скорости работы подсистемы оперативной памяти. Если акцент делается на разгоне процессора, то рекомендуем выбирать параметр

PCH Core Voltage (ASUS), PCH 1.05V Voltage (ASRock / MSI), PCH Core (GIGABYTE)

Задает напряжение питания на чипсете

Изменение этого напряжения питания позволяет улучшить стабильность работы системы при увеличении опорной частоты BCLK. Как правило, достаточно выставить значение в пределах 1,05 − 1,15 В.

PCH VLX Voltage (ASUS), PCH 1.5V Voltage (ASRock / MSI), PCH IO (GIGABYTE)

Задает напряжение питания на модуле в чипсете, отвечающего за обмен данными между процессором и чипсетом посредством шины DMI

С помощью данного параметра можно улучшить стабильность работы системы при изменении частоты шины DMI (а иногда и опорной частоты BCLK). Экспериментальным путем установлено, что чем выше ее скорость, тем ниже должно быть значение этого напряжения и наоборот. К примеру, для частоты DMI свыше 120 МГц нужно выставлять значение близкое к 1,05 В, а для частоты меньше 90 МГц − около 1,70 В.

В оверклокерских материнских платах можно обнаружить массу дополнительных напряжений, которые имеет смысл изменять только при экстремальном разгоне. В повседневных же ситуациях эти опции окажутся маловостребованными. Если же вас все-таки заинтересует их предназначение, опять же, рекомендуем обратиться к нашему справочнику по настройкам BIOS.

Дополнительные настройки, позволяющие добиться стабильности работы процессора после его разгона

В современных материнских платах реализовано довольно много технологий, которые так или иначе влияют на работу системы, в том числе и процессора. Пока все компоненты ПК функционируют в «стоковых» режимах, это незаметно. Но вот в процессе оверклокинга их влияние становится более заметным, поэтому иногда оптимизацию полезно проводить и на этом уровне.

Рекомендации по использованию

Load Line Calibration (ASUS), CPU Load Line Calibration (ASRock), CPU VRIN Loadline Calibration (GIGABYTE), CPU Vdroop Offset Control (MSI)

Позволяет скомпенсировать просадки напряжения питания на компонентах процессора, возникающие при увеличении нагрузки на него

При стандартных параметрах или при их незначительной оптимизации стоит устанавливать значения [Medium], [Standart] или [High] (если значения в процентах, то [+25%] или [+50%]), а при экстремальном разгоне есть смысл использовать и более агрессивные настройки − [Ultra High] и [Extreme] (если значения в процентах, то [+75%] или [+100%]). Однако стоит учитывать тот факт, что чем выше значение, тем большим будет нагрев силовых элементов модуля VRM и самого процессора. К тому же выбор неправильного параметра может, наоборот, привести к слишком завышенному напряжению на процессоре, что, опять же, негативным образом скажется на его температуре. Корректность и точность работы технологии Load Line Calibration также зависит и от уровня материнской платы.

PLL Selection (ASUS), Filter PLL Frequency (ASRock), CPU PLL Selection (GIGABYTE), CPU PCIE PLL (MSI)

Отвечает за выбор метода фильтрации сигнала тактового генератора опорной частоты BCLK

При поднятии опорной частоты BCLK рекомендуется выбирать метод [SB PLL]

Filter PLL (ASUS / MSI), Filter PLL Level (GIGABYTE)

Позволяет активировать дополнительные методы фильтрации сигнала тактового генератора опорной частоты BCLK

При сильном поднятии опорной частоты BCLK (свыше 170 МГц) следует устанавливать параметр [High BCLK], в противном случае − оставлять значение по умолчанию (

BCLK Amplitude (ASUS / MSI)

Позволяет задать амплитуду сигнала тактового генератора опорной частоты BCLK

Увеличение этого значения рекомендуется при сильном поднятии опорной частоты BCLK.

CPU Spread Spectrum (ASUS), Spread Spectrum (ASRock, MSI, GIGABYTE)

Изменяет форму сигнала на системной шине (BCLK), благодаря чему уменьшается уровень электромагнитного излучения и наводок от компонентов системы

При любой, даже незначительной оптимизации параметров системы рекомендуется отключать эту опцию (значение [Disabled]).

EPU Power Saving Mode (ASUS), Power Saving Mode (ASRock), CPU Internal VR Efficiency Management, Intel Turbo Boost Technology, Intel SpeedStep Technology, EIST Technology (ASUS / ASRock / GIGABYTE / MSI) и другие

Отвечают за активацию разнообразных энергосберегающих технологий, как всего процессора, так и его отдельных узлов

Для достижения максимальных результатов во время разгона комплектующих рекомендуется выключать все эти функции (значение [Disabled]).

CPU Integrated VR Current Limit (ASUS), Primary Plane Current Limit (ASRock), Core Current Limit (GIGABYTE), CPU Current Limit (MSI)

Позволяет установить максимальную силу тока, проходящего через встроенный в процессор регулятор питания

В зависимости от степени разгона, следует устанавливать более высокие значения, что отодвинет порог срабатывания «троттлинга» (пропуск тактов) при достижении максимальной величины тока, проходящего через встроенный регулятор питания.

Long Duration Package Power Limit (ASUS / ASRock / GIGABYTE / MSI)

Задает значение максимальной мощности, потребляемой процессором

В зависимости от степени разгона следует устанавливать более высокие значения, что отодвинет порог срабатывания «троттлинга» (пропуск тактов) при достижении максимальной мощности, потребляемой процессором. По умолчанию этот показатель равен TDP процессора.

Short Duration Package Power Limit (ASUS / ASRock / GIGABYTE / MSI)

Задает значение максимально возможного энергопотребления процессора при очень кратковременных нагрузках (не более 10 мс)

Следует устанавливать такое значение, которое не превышает показатель Long Duration Package Power Limit больше, чем на 25%.

CPU Current Capability (ASUS), Thermal Feedback (ASUS), CPU Integrated VR Fault Management (ASUS), CPU Over Voltage Protection (MSI), CPU Over Current Protection (MSI), CPU VRM Over Temperature Protection (MSI), CPU VRIN Current Protection (GIGABYTE), CPU VRIN Thermal Protection (GIGABYTE), CPU VRIN Protection (GIGABYTE) и другие

Расширяет диапазон разнообразных параметров процессора и регуляторов питания (например, силы тока, входного напряжения, допустимых рабочих температур и т.д.)

Данные опции фактически являются защитами от повреждения процессора и других компонентов системы из-за подачи высокого напряжения. Во время оверклокинга допустимые значения стоит увеличивать (либо вовсе отключать некоторые опции), чтобы избежать ситуации, когда материнская плата будет ограничивать возможности разгона.

Intel Adaptive Thermal Monitor (ASUS / ASRock / GIGABYTE / MSI)

Позволяет управлять механизмом защиты процессоров Intel от перегрева

Во время разгона процессора данную опцию лучше отключать (значение [Disabled]), а его нагрев мониторить вручную.

От теории к практике. Разгон процессоров, основанных на микроархитектуре Intel Haswell, на примере модели Intel Core i7-4770K

А теперь пришло время показать, как использовать полученные теоретические знания на практике. Для этого был выбран процессор Intel Core i7-4770K с разблокированным множителем. Остальная конфигурация тестового стенда приведена в таблице:

ASRock Fatal1ty Z97X Killer (версия BIOS 2.00)

Intel Core i7-4770K

SilverStone Heligon SST-HE01 (максимальная скорость вращения вентилятора)

2 x DDR3-2400 TwinMOS TwiSTER 9DHCGN4B-HAWP

AMD Radeon HD 6970

Seagate Barracuda 7200.12 ST3500418AS

Чтобы показать зависимость между параметрами системы во время разгона процессора, были проведены три серии тестов для разных значений опорной частоты процессорных ядер (100, 125 и 166 МГц). В каждом случае мы постепенно увеличивали их множитель и искали минимально возможные показатели напряжения входного питания (VRIN) и напряжения на процессорных ядрах (Vcore), при которых ПК еще сохранял стабильность своей работы (проверка осуществлялась путем прогона стресс-теста). Для комплексного анализа эффективности оптимизации параметров параллельно осуществлялась фиксация нагрева процессора (выбиралась температура самого горячего ядра) и уровень входного энергопотребления (всей конфигурации от розетки). Естественно, все показания снимались под максимальной нагрузкой на CPU.

Опорная частота процессорных ядер − 100 МГц

Частота процессора, МГц

Входное напряжение питания на процессоре, В

Напряжение питания на процессорных ядрах, В

Источник: http://ru.gecid.com/cpu/osobennosti_razgona_intel/?s=all

Как разогнать процессор

Что такое разгон (оверклокинг)? Это изменение штатного режима работы устройств компьютера с целью увеличить их быстродействие и повысить общую производительность системы. Если не брать во внимание экстремальный оверклок, цель которого – выжать из компонента максимум и зафиксировать рекорд, разгон дает возможность удовлетворять растущие потребности приложений и игр без замены оборудования на более мощное.

Сегодня я расскажу, как разогнать процессор (ЦП). Рассмотрим методики и средства, с помощью которых определяют производительность и стабильность разогнанной системы, а также – простой способ ее возврата к «доразгонному» состоянию.

Прежде чем начать

Разгоняться способны любые современные процессоры, даже мобильные, хотя последним это, по мнению их создателей, противопоказано из-за невозможности обеспечить адекватное охлаждение. Да, разогнанный «камень» (сейчас и далее будем иметь ввиду процессоры стационарных ПК) потребляет больше энергии и выделяет больше тепла, поэтому первое, о чем стоит позаботиться – это о хорошей системе охлаждения. Она может быть и воздушного, и жидкостного типа, главное, чтобы величина ее теплоотвода (TDP) соответствовала или превышала тепловую мощность «камня».

Вторая важная деталь – блок питания (БП). Если его сил едва хватает на текущее энергопотребление устройств, оверклок он не потянет. Для расчета необходимой мощности БП с учетом разгона воспользуйтесь онлайн-калькулятором: выберите из списков комплектующие, которые установлены на вашем ПК, и нажмите «Calculate».

Версия калькулятора «Expert» позволяет учесть вольтаж и такты ЦП после разгона, а также – процент нагрузки на него (CPU Utilization). Последнее выбирайте по максимуму – 100%.

Далее обновите BIOS до последней стабильной версии. Нередко это улучшает разгонный потенциал всей системы.

После обновления BIOS погоняйте проц на максимальной нагрузке для оценки стабильности его работы в неразогнанном состоянии. Можете использовать для этого бесплатные утилиты Prime95, S&M или OCCT. Ошибки, выключения, перезагрузки во время тестирования говорят о том, что компьютер не готов к оверклокингу из-за недостатка охлаждения, проблем по питанию или других причин.

Ниже показаны параметры тестирования на стабильность программой OCCT:

Внимание! Показанный на скриншоте тест очень сильно нагружает и нагревает процессор. Запускайте его только тогда, когда уверены в достаточности охлаждения. И никогда не запускайте на ноутбуках – это может вывести аппарат из строя.

Методики разгона

Существует 2 основных метода разгона ЦП: путем увеличения опорной тактовой частоты шины FSB (группы сигнальных линий на материнской плате, которая обеспечивает связь между процессором и другими устройствами) и множителя процессора (числа, на которое он умножает частоту шины; в результате этой операции получается значение частоты самого «камня»).

Первым параметром управляет тактовый генератор BCLK на материнской плате (иначе его называют клокером или чипом PLL). Вторым – сам проц. Для изменения множителя ЦП необходимо, чтобы он был разблокирован на повышение, а этим могут похвастаться далеко не все модели. «Камни» с разблокированным множителем, например, Intel K-серии или AMD FX, разгоняются до более высоких показателей, чем простые, но и стоят дороже.

Разгон по шине FSB заключается в увеличении частоты тактового генератора BCLK. Это рискованный способ, так как вместе с увеличением скорости шины повышается скорость памяти (решения, где ЦП и память разгоняются независимо друг от друга, встречаются нечасто), а на старых материнских платах – и других устройств, подключенных к периферийным шинам. Словом, в нештатный режим работы переходит вся система. Однако если у вас более-менее новый компьютер, завышение опорной частоты вряд ли выведет его из строя. В случае установки слишком большого значения система просто перезапустится и сбросит его на умолчания.

Разгонять ЦП по шине можно как под Windows – с помощью утилит, так и через настройки BIOS. Недостаток первого способа – избирательность, поскольку утилиты поддерживают ограниченный круг устройств. Часть таких улилит выпускают производители материнских плат, но и они предназначены не для всей линейки их продуктов. Списки устройств, которые поддерживаются конкретной программой, обычно приводятся на официальных сайтах или в документации к программам.

Оверклок через увеличение множителя ускоряет только процессор, так как опорная частота остается неизменной.

Разгоняем «камень» с помощью программ

В качестве примера рассмотрим SetFSB – утилиту, поддерживающую различные генераторы BCLK как старых, так и современных материнских плат. Перед использованием SetFSB узнайте точную модель вашего генератора – найдите его на самой плате или посмотрите в документации к ней.

Далее  Переводим текст по фотографии в онлайн и офлайн

Генератор BCLK может выглядеть так:

Или иметь более вытянутую форму корпуса. Но, думаю, разберетесь.

После запуска программы:

  • Выберите из списка «ClockGenerator» ваш чип PPL.
  • Нажмите «GetFSB», чтобы программа определила текущие такты системной шины.
  • Короткими шажками передвигайте центральный ползунок (отмеченный цифрой 3 на скриншоте) в правую сторону, одновременно контролируя температуру ЦП. SetFSB не имеет функции термоконтроля устройств, поэтому используйте другие инструменты, например, утилиты SpeedFan, HWMonitor и аналоги.
  • Подобрав оптимальную скорость шины, сохраните ее нажатием «SetFSB».

Если что-то пошло не так, просто перезагрузите компьютер – настройки будут сброшены.

Другие утилиты для разгона:

  • EasyTune6 – предназначена для материнских плат Gigabyte.
  • DualCoreCenter – то же самое для плат MSI.
  • AMDOverDrive – для процессоров AMD.
  • ASUSTurboVEVO – для некоторых материнских плат производства Asus. Кроме версии для Windows может входить в набор утилит UEFI (графического аналога BIOS).
  • SoftFSB – программа, похожая на SetFSB, но давно позаброшенная автором. Годится для очень старых компьютеров.
  • CPUCool и входящий в нее разгонный компонент CPUFSB – также несколько устарели, но пока актуальны.

Оверклок через BIOS

Разгонять «камень» изменением параметров BIOS не более сложно, чем с помощью программ. Главное, не торопиться.

В настройках BIOS Setup или графической оболочки UEFI (на скриншоте показана вкладка «AI Tweaker» UEFI материнской платы ASUS) нас интересуют следующие опции:

  • CPUClock (также может называться FSB Frequency, External Clock, Frequency BCLK или как у меня – Частота BCLK) – опорная частота FSB.
  • CPU Ratio (CPU Clock Multiplier, CPU Frequency Ratio, Ratio CMOS Setting, Multiplier Factor и т. п.) – множитель ЦП.

Как я говорил, умножением значений этих двух опций получают собственную частоту процессора. В моем примере она равна 3500 MHz. (200*17,5).

Для повышения быстродействия ЦП можете изменить один или оба этих параметра. Так, чтобы поднять частоту «камня» до 4000 MHz, достаточно увеличить CPU Ratio до 20, а FSB Clock оставить прежним. Но если множитель заблокирован, остается работать только с шиной FSB.

Значение FSB Clock увеличивают шагами по 5-10 Mhz, после сохранения настройки каждый раз перезагружая ПК и отслеживая в BIOS температуру ЦП.

При значительном повышении CPU Ratio и FSB Clock иногда полезно слегка увеличить напряжение питания проца (опция VCORE Voltage, CPU Core, CPU Voltage и т. п.). В моем примере меняться будет смещение CPU Offset Voltage. Шаг изменения – 0,001 V. Однако не увлекайтесь, так как при повышении этого показателя вырастет температура не только «камня», но и элементов VRM (регулятора напряжения его системы питания), что может вывести их из строя.

Поскольку ускорение шины FSB влияет на работу оперативной памяти, для повышения стабильности разогнанной системы опытные оверклокеры меняют значение ее частоты на минимальное, чтобы ему было, куда расти. В разных версиях BIOS опция называется Memory Frequency, SDRAM Frequency Ratio, System Memory и т. п.

Некоторые дополнительно отключают технологии энергосбережения ЦП – Turbo Core, Cool’n’Quiet, С1Е и т. д., для сохранения достигнутого быстродействия при высоких нагрузках. Но это целесообразно только для тех, кто постоянно нагружает компьютер по максимуму.

Какой должна быть температура разогнанного «камня»

Современные процессоры нормально переносят температуру в 80-85 градусов, но более сильного нагрева всё же лучше не допускать. Соответственно, без нагрузки температура разогнанного проца не должна превышать 55-60 градусов.

Для старых ЦП температурный максимум составляет 65-70 градусов, а нагрев без нагрузки не должен быть выше 35-45 градусов.

Тестирование системы на стабильность

Насколько стабильно будет работать разогнанный компьютер, помогут определить те же утилиты, которыми вы проверяли его перед разгоном. Я использую программу OCCT (OverClock Checking Tool),поэтому остановлюсь подробнее на ее тестах.

Нас интересует, как будут держать нагрузку основные компоненты ПК – ЦП, память, чипсет и блок питания. Рекомендую начинать с комплексной проверки трех первых узлов. Если тест пройдет без ошибок, значит, при обычной работе с ними также не должно быть проблем. При нестабильности (ошибках, зафиксированных программой, перезагрузках, выключениях, синих экранах смерти), число нагружаемых узлов уменьшаем до 1-2 и методом исключения определяем, что именно не справляется.

Во время тестирования OCCT отображает в окне «Мониторинг» основные параметры системы – уровни нагрузки, температуры, напряжения и прочее, а после окончания теста сохраняет их в виде графиков.

Итак, комплексную проверку ЦП, чипсета и памяти – «Большой набор данных» запускаем с вкладки CPU:OCCT. Время проведения – 1 час. Тип – Авто. Для запуска нажимаем кнопку «On» и наблюдаем за изменением показателей в окне «Мониторинг».

Если тест не пройден, выбираем «Средний набор данных» – проверку проца и памяти. Или «Малый набор» – только проца.

Следующий тест мы уже рассматривали. Это CPU:Linpack, который нагревает ЦП по максимуму. Он дает возможность выявить проблемы, которые возникают при экстремальной нагрузке.

Продолжительность теста Linpack тоже составляет 1 час. Установите для него такие же настройки, как по время проверки перед разгоном: максимум памяти – 90% и флажки возле всего, что находится ниже.

Последнее, что желательно узнать, – справится ли с новой нагрузкой блок питания. Для этого в программе OCCT предусмотрен тест Power Supply. Он заставляет элементы блока питания работать с максимальной отдачей, поэтому слабый или некачественный БП может его не выдержать. Словом, если не уверены, лучше не рискуйте. Однако слабый блок питания вряд ли способен удовлетворить «аппетит» разогнанной системы.

Для проведения теста Power Supply установите настройки, как показано на скриншоте ниже. Плюс отметьте флажками все доступные пункты.

Как снять разгон

Если вы переусердствовали и компьютер стал выключаться или перезагружаться сразу после старта, не беда. Отметить переразгон очень легко – так же, как любые другие ошибочные настройки BIOS. Просто сбросьте BIOS на умолчания.

Понравилась статья? Подпишитесь на канал, чтобы быть в курсе самых интересных материалов

Источник: http://nig.mirtesen.ru/blog/43024943563/Kak-razognat-protsessor

GreenTech_Reviews

Руководство по разгону процессора Core i9-10900K на материнских платах ASUS ROG Maximus XII

Данная статья является вольным переводом информационного сообщения пользователя Falkentyne на Overclock.net.
Некоторые термины оставлены без перевода, чтобы вам было проще найти эти параметры или значения в меню BIOS Setup. Если вы нашли неточность в переводе, то можете обратиться к редактору GreenTech_Reviews через электронную почту ([email protected]).

Автор оригинального сообщения, автор перевода и редакция GreenTech_Reviews не несут ответственности за вышедшие из строя комплектующие в результате установки неверных параметров. Данный материал несёт ознакомительный характер. Все действия вы производите на свой страх и риск.

———————————————————————————————————————-
Данная статья является набором рекомендаций по разгону K-процессоров на материнских платах ASUS ROG серии Maximus XII (12).
Для подготовки статьи была взята материнская плата Maximus XII Extreme, но рекомендации подойдут и при использовании других плат серии..
Речь в данной статье пойдёт о разгоне процессора Core i9-10900K.

Версия BIOS на момент подготовки статьи: 0508.
Автор выражает огромную благодарность Shamino за предоставленный тестовый стенд и рекомендации по его настройке.

Простой путь для тех пользователей, кто хочет просто играть в игры или приступить к иной работе.

Используйте полностью автоматический режим (Load optimized defaults в BIOS Setup), чтобы система работала в полном соответствии с рекомендациями Intel для конкретного процессора.

Вы можете проверить значение «SP» или «качество процессора» в BIOS.
В среднем у большинства пользователей это значение составляет 63.
Мировой рекорд по разгону под жидким азотом установлен на чипе с рейтингом 117.

———————————————————
«Быстрый» автоматический разгон

Загрузите операционную систему и запустите простой тест нагрузки, например — Cinebench R20.
Затем вернитесь в настройки BIOS и установите параметр Core Ratio в режим AI Optimized.
Подсказка: точные настройки режима AI Optimized для вашего процессора вы можете найти в разделе «AI Features».
Также вы можете активировать профиль XMP для вашей оперативной памяти.
Но сегодня речь пойдёт не о разгоне оперативной памяти, а только о разгоне процессора.

———————————————
«Быстрый» ручной разгон

Включите профиль XMP оперативной памяти и установите множитель частоты процессора. Больше ничего делать не нужно.
При частоте процессора от 4.8 до 5.1 ГГц никакие другие параметры менять не придётся, система будет работать в автоматическом режиме.
Для игр можно установить частоту 5.0 ГГц для всех ядер.

———————————————————————————————
Что можно ждать в зависимости от системы охлаждения?

Недорогой кулер (воздух): 4.8 ГГц
Дорогой высокоэффективный кулер (воздух): 4.9-5 ГГц
Хорошая необслуживаемая (AIO) система жидкостного охлаждения: 5-5.2 ГГц, но зависит от «качества» процессора
Система жидкостного охлаждения из премиальных компонентов, чиллер, скальпирование: 5.2 ГГц без проблем, далее зависит от «качества» процессора
Экстремальные стресс-тесты: 4.8 ГГц «на воздухе», 5 ГГц «под водой».
Если оставить все настройки по умолчанию, то процессор будет использовать функцию Thermal Velocity Boost (только для i9-10900, i9-10900K/F/KF), которая является частью технологии Turbo Boost 3.0 (только для всех моделей i9-10900 и i7-10700).
Технология позволяет получить 4.9 ГГц по всем ядрам, если температура процессора составляет менее 70°C. Иначе частота составит 4.8 ГГц (технология Turbo Boost 2.0). При лёгких нагрузках два лучших ядра будут работать на частоте 5.3 ГГц, если температура процессора составляет менее 70°C. Иначе — 5.1 ГГц..

————————————————————-
Поведение технологии Turbo Boost 3.0

1) Только два лучших ядра могут достигать множителя x53. Вы можете узнать какие именно это ядра в BIOS в разделе «CPU Configuration» или в самой новой версии утилиты CPU-Z по кнопке Tools и там Clocks (выделены красным цветом).
2) Windows 10 версии 1909 или новее требуется для работы этой технологии.
3) Вы можете получить множители x53 при лёгких нагрузках при помощи технологии TB 3.0 если:
a) загружено не более 2 ядер;
b) эти 2 ядра отмечены как «лучшие» системой.
Помните, что при автоматических настройках будут соблюдены ограничения по энергопотреблению (Power Limit) и времени увеличенного энергопотребления (Tau) в соответствии со спецификацией Intel. Максимальное по умолчанию значение 250 Вт — «краткосрочное» значение «Power Limit 2», далее система ограничит процессор значением 125 Вт — «долгосрочное» значение «Power Limit 1».

————————————————-
Берём управление в свои руки

Установка всех параметров вручную приведёт к достижению максимальной производительности и полному отключению ограничений (Power Limit 1 и 2), а также отключению ограничений технологии Thermal Velocity Boost.

Хотите полностью взять на себя контроль за напряжением процессора без риска выйти за пределы безопасных значений? Это просто.

BIOS автоматически протестирует вашу систему охлаждения. Вы можете загрузить операционную систему, поработать в привычных программах, а затем перезагрузить систему и BIOS произведёт дополнительную калибровку системы охлаждения.

И тогда можете посмотреть полученные значения. Для большинства пользователей важно значение напряжения в режиме «Non AVX». Именно это напряжение надо считать максимально допустимым для установки в BIOS. Также следует установить значение «Level 4» для параметра «Loadline Calibration». Вручную установите значение, близкое к тому, что предложила система с шагом на 0.5 мВ выше. К примеру, если прогнозируемое напряжение составляет 1.172 В, то установите 1.175 В, а не 1.170 В.
Это всё, что от вас требуется. В таком режиме система будет стабильно работать в 99% приложениях, включая обычные стресс-тесты и стресс-тесты с реалистичным использованием AVX инструкций (Realbench 2.56, Cinebench R20, Prime95 AVX disabled small FFT, AIDA64 Stress FPU).

Стресс-тесты Prime95 small FFT с AVX или FMA3, Y-cruncher AVX2, LinX 0.9.6, Linpack Extreme не важны для 99% пользователей! Давайте проявим здравомыслие и не будем считать это важным. Но если, всё же, для вас это важно, то давайте поговорим и на эту тему.

———————————————————————————————————————————
Продвинутый материал для тех, кто любит читать (или получает удовольствие от видео с осциллографом от Buildzoid)

BIOS материнских плат ASUS считается самым продвинутым и самым удобным для настройки системы.

По сравнению с платформой Z390, напряжения требуются ниже. Более не требуется 1.35 В IO/SA для запуска профиля XMP с частотой оперативной памяти 3200 МГц. Все автоматические настройки (BIOS Defaults) теперь на 100% ограничены по всем лимитам и напряжениям в соответствии со спецификацией Intel. Правда, некоторые материнские платы конкурентов нарушают эти правила, как это было и в случае с платами Z390.

Самая главная функция плат ASUS – богатый набор настроек напряжения.
Мной был тщательно протестирован процессор Core i9-10900K на частотах 4.8-5 ГГц для всех ядер, после чего я могу с уверенностью сказать, что установки напряжений на плате ASUS буквально на 100% соответствуют действительности.

Платы ASUS характерны наличием двух вариантов: Non AVX и AVX. Оба варианта характерны значением «Level 4» для параметра «Loadline Calibration». Результаты калибровок становятся менее точными при более высоких значениях уровней из-за увеличений скачков напряжений. В частности, это хорошо заметно при значении «Level 6», поэтому, если вы планируете установку такого уровня, вам придётся подбирать параметры вручную. Я использую Level 4 при 5.2 ГГц для всех ядер в Cinebench R20.

Пример того, как себя ведёт напряжение при разных уровнях LLC можно посмотреть по ссылке, где для изыскания была взята материнская плата ASUS ROG Maximus XI Gene: https://elmorlabs.com/index.php/2019-09-05/vrm-load-line-visualized/
По сообщениям пользователя с псевдонимом Buildzoid именно абсолютное минимальное значение напряжения определяет стабильность, а не среднее.

Благодаря оптимизации подсистемы питания плат ASUS на базе чипсета Z490, значение «Level 4» позволяет добиться минимального провала напряжения.

Немного о работе LLC

Данный параметр обычно задаётся в мОм (миллиом) и определяет, насколько уменьшается выходное напряжение при нагрузке. В соответствии с законом Ома U = R*I. Падение напряжения вычисляется как LoadLine*I(out) (выходной ток). К примеру, для LoadLine 1 мОм и тока 100 А будет справедлив расчёт dU = 0.001 Ω * 100 A = 0.100 В. То есть, при напряжении 1.300 В и нагрузке 100 А реальное выходное напряжение будет 1.300-0.100 = 1.200 В. Основная причина использование LoadLine заключается в минимизации скачков (завышений) напряжения при переходе от высокого к низкому выходному току и достижения более предсказуемого поведения.

Подбирать минимально стабильное напряжение (с учётом вашей системы охлаждения) надо при использовании не-AVX стресс-теста, основанного на программе Prime95 29.8 build 6 small FFT без использования AVX. Обычным пользователям стоит сфокусироваться на таком подходе, так как его вполне достаточно.

При полной нагрузке это будет называться vMin – минимальное напряжение, необходимое для обработки инструкций SSE2 без ошибок. Если при полной нагрузке в иных приложениях напряжение упадёт ниже vMin, чем мы подобрали для Prime95, то со стабильностью в этих приложениях могут возникнуть проблемы.

Обратите внимание, что инструкции AVX являются расширением SSE2, поэтому полностью стабильная работа SSE2 для нас очень важна. Да, при использовании инструкций AVX используется большее потребление тока и выделяется больше тепла, но, вопреки заблуждению многих пользователей, значение vMin при выполнении таких инструкций практически не отличается. Но что меняет минимальный уровень – это тепло. Vdroop не меняет минимальный уровень напряжения, а только изменяет начальное напряжение, необходимое для компенсации.

В моих тестах (при условии правильно выставленных напряжениях VCCIO и VCCSA) при настройках в BIOS для не-AVX тестов система для рядовых пользователей работает полностью стабильно в не-AVX приложениях и даже при реалистичном использовании AVX инструкций — Realbench 2.56, Cinebench R20, AIDA64 «Stress FPU», and Battlefield 5.

Я обнаружил, что стресс-тест Prime95 small FFT с отключённым AVX, Realbench 2.56, CB R20 и AIDA64 «Stress FPU» очень похожи в нагрузке и требуют практически идентичного напряжения в целом.

Значение «Die sense» на платах ASUS чрезвычайно близко к реальности и при нагрузке Prime95 small FFT без AVX является для нас целевым значением. Если при нагрузке с AVX этот показатель остаётся аналогичным или выше Vmin, то система должна быть полностью стабильной. Но чего стоит опасаться, так это того, что Vmin будет ниже в полных AVX нагрузках – тогда будут возникать проблемы со стабильностью.

Установка напряжения в BIOS для AVX задач основана на кратком тесте Prime95 small FFT с AVX.

Я обнаружил, что это напряжение предсказывается не так точно, как в случае предсказания для нагрузок без AVX даже на уровне «Level 4», потому что напряжение в «Die sense» для использующих AVX программ может падать ниже предсказанного значения Vmin в Prime95 small FFT без AVX. Это может привести к нестабильной работе системы, поэтому вам потребуется увеличить напряжение, чтобы оно превышало то, что вы видите в нагрузке в тесте Prime95 small FFT без AVX. Вы можете смотреть показатель WHEA в программе HWinfo64, чтобы проверять наличие ошибок CPU Cache L0.

Также имейте в виду, что нагрев процессора будет заметно выше при использовании инструкций AVX, чем без них, поэтому вам потребуется использование более высокого значения Vmin. К примеру, если процессор стабилен в тесте Prime95 small FFT без AVX на частоте 4.7 ГГц при напряжении 1.05 В, то он не будет стабилен в тесте Prime95 small FFT с AVX при тех же параметрах, а также будет горячее на 10-15°С. Вам потребуется компенсировать это улучшением системы охлаждения и увеличением значения Vmin.

Игрокам и пользователям, работающим в профессиональном программном обеспечении, будет достаточно руководствоваться значениями предсказаний Non-AVX в BIOS.

Скажу более конкретно — Prime95 small FFT с AVX не важен для этой платформы. Предсказаний Non-AVX вполне достаточно для повседневного использования большинства обычных AVX приложений.

Если вы не занимаетесь работой в медицинской или научной области, где требуются постоянные расчёты с использованием AVX инструкций, то не беспокойтесь за стабильность работы стресс-теста Prime95 AVX small FFT. Прохождение тестов Prime95 AVX small FFT, FMA3 small FFT, LinX 0.9.6 с объёмом задачи 35000 или Linpack Extreme 1.1 «даст» на ваш процессор ток 250 А – это, конечно, круто и вы будете чувствовать полную уверенность в своей системе, но реально – это не важно! Тепловыделение 10 ядер, сильные изменения Vdroop, огромное энергопотребление – это не симуляции реальных задач для данной платформы. Поэтому не надо слушать тех, кто говорит, что «если у тебя система проходит тест не-AVX small FFT, то она всё равно работает нестабильно». Особенно, если частота процессора составляет 4.8 ГГц и выше.

Кое-что ещё: перестаньте беспокоиться за температуру подсистемы питания. Конечно, всегда приятно видеть невысокие температуры, но подсистемы питания спроектированы для работы при достаточно высоких температурах. Подсистема питания – это не процессор. Подсистема питания не будет внезапно начинать сложные математические вычисления или заставлять «проседать» 12 В линию блока питания до 10 В при 85°С. Температуры 60-70 градусов – это совершенно нормально. Вы всегда можете установить дополнительный вентилятор, чтобы снизить температуру питания. Конденсаторы прекрасно работают при температуре 85°С. А силовые элементы без сбоев могут работать и при температуре 100°С. Поэтому нет смысла говорить, что плата X лучше платы Y, потому что у неё температура 55°С, а не 75°С. Это никак не влияет на производительность.

Теперь о моих результатах тестирования. Это всё мои изыскания, демонстрирующие работу системы с предсказанием значения NonAVX и LLC4 (Level 4).

Vmin — фиксированное напряжение Vcore, частота 4.7 ГГц.

Установка в BIOS напряжения 1.150 В, LLC4: стабильно в Apex Legends, Minecraft, AIDA64 «Stress FPU» (1.039v в нагрузке! AIDA FPU), Prime95 без AVX тест small FFT.

Vmin: установка в BIOS напряжения 1.145 В, 1.012 при нагрузке: 4 часа стабильной работы Realbench 2.56 при температуре не выше 62°С; AIDA64 в течение часа при напряжении в нагрузке 1.012 В и температуре до 64°С; Prime95 small FFT без AVX (в нагрузке напряжение 1.012 В).

Значение 1000 кГц для «VRM Switching Frequency» делает систему в Minecraft более стабильной, так как Minecraft – это особый случай, при котором игра даёт 100% нагрузку всем ядрам в момент загрузки. Это также разоблачает «ошибку» Internal Parity Error процессорных ядер Skylake, если значение Vmin оказывается выше ожидаемого. Эта ошибка была найдена программистом Oriostorm из студии Respawn при тестировании и отладки игры Apex Legends. Этот «баг» вызывает контроля чётности «Parity Error», а не более ожидаемую ошибку «L0 cache error» из-за низкого напряжения Vcore.

4.8 ГГц, 1.215 В, LLC «Level 4»: AIDA64 stress FPU работает стабильно (1.066 В в нагрузке — AIDA64 FPU стабильно), загрузка Minecraft стабильна, Prime 95 с AVX работает стабильно.

Установленные настройки в BIOS: 1.180 В, LLC4 (Level 4): в AIDA64 Stress FPU 1.048 В, температура 68°С; Realbench 2.56 – 66°С при напряжении в нагрузке 1.048 В, Minecraft Java – случайные ошибки «Internal Parity Errors» во время загрузки.

Minecraft Java Vmin: 1.190 В L4, в реальности в нагрузке 1.066 В, температура 60°C максимум, 22 цикла загрузки, ошибок «Internal Parity Errors» не выявлено.

Абсолютное предсказание Vmin в BIOS: 1.175 В. Установка VRM 1000 кГц, вроде, улучшает стабильность в Minecraft.

4.9 ГГц, 1.225 В, LLC4: загрузка Minecraft Java, AIDA64 (1.083 В в нагрузке в AIDA64 FPU, 145 А, 72°С, 1 час тестирования) с охлаждением Arctic Freezer II 360 (температура в помещении 23-24 градуса).

5 ГГц (4.7 ГГц Cache), 1000 кГц

Тест с LLC4: 1.285 В Vmin SSE3, Normal AVX тесты, загрузка Minecraft, Prime95 SSE2 и т.д. – в нагрузке 1.128 В.

Загрузка Minecraft Java 40 циклов при LLC6, 500 кГц в качестве проверки 100% стабильности работы и наличие ошибок «CPU Internal Parity Error».

Более высокие значения LLC: 1.235 В, LLC6, VCCIO: 1.05 В, VCCSA 1.10 В. В нагрузке Vmin: 1.153 В.

Кое-что ещё

Технология Hyper-Threading очень чувствительна к напряжениям IO/SA, поэтому нестабильность в работе может проявляться при очень близких значениях напряжения к напряжению Vmin. Для проверки как L3 cache/IMC (через VCCIO/VCCSA) может снижать стабильность, используйте Prime95 без AVX с тестом FFT 112k-112k и наблюдайте в HWinfo64 значение количества ошибок WHEA CPU Cache L0, если значение напряжения находится в пределах 10 мВ от вашего напряжения Vmin. Также будет проявляться нестабильная работа во время прохождения 112k теста. Тест 112k – особый случай, так как он фактически попадает в оперативную память и кешируется в ней, что позволяет определить нестабильную работу IMC (контроллера памяти, встроенного в процессор).

При тестировании вашего значения Vmin, если вы установите недостаточные напряжения VCCIO/VCCSA, вы можете получить следующие ошибки:

1) Ошибки «WHEA CPU Cache L0» в программе HWinfo64.

2) System Service Exception (or IRQL) BSOD.

3) Случайные вылеты/ошибки в Prime95.

4) Видео драйвер может быть остановлен во время тестирования.

Небольшой диапазон 10-20 мВ для завышения или занижения IO/SA может вызвать нестабильную работу в 112K-112K тестах Prime95 (без AVX), Realbench 2.56 или AIDA64 Stress FPU, если не увеличить напряжение Vcore.

Если значения для IO/SA установлены правильно, а напряжение Vmin недостаточное, то тест AIDA64 Stress FPU будет сообщать о нестабильной работе вместо BSOD или «падения» видео драйвера.
Я обнаружил, что напряжения 1.05 В для VCCIO и 1.10 В для VCCSA подходят для моей системы. Ваши значения могут отличаться в зависимости от скорости памяти и её таймингов.

Если добиться стабильности не удаётся, то попробуйте увеличить напряжение на процессор. Обратите внимание, что высокоскоростные профили (XMP) памяти требуют более высоких напряжений на IO/SA. Это является причиной требования более высокого напряжения Vcore при разгоне оперативной памяти. Иногда увеличение напряжений IO/SA при памяти с частотой 4000 МГц может позволить немного снизить напряжением Vcore.

Некоторые серьёзные AVX тесты (не зацикливайтесь на small FFT AVX тестах).

Prime95 AVX1 15K: 1.250 В LLC6, VCCIO: 1.05 В, VCCSA: 1.10 В (минимальное зафиксированное напряжение в нагрузке 1.128 В).
Prime95 AVX2 (FMA3) 15K: 1.270 В LLC6, VCCIO: 1.05 В, VCCSA: 1.10 В (минимальное зафиксированное напряжение в нагрузке 1.137 В)

5.1 ГГц: Prime95 AVX1: 1.320 В LLC6 – 100°C (FMA3 невозможно протестировать из-за высоких температур).
5.2 ГГц: Cinebench и игры: 1.380 В LLC4 (предсказание BIOS) — 1.199 В в нагрузке – пройден тест CB R20. В таком режиме я сделал мало проверок. 1.350 В и LLC6 также работает корректно.

5.3 ГГц: загрузка Minecraft, игра в Battlefield 5 полностью стабильны при 1.380 В и LLC7, но стресс-тесты невозможны из-за температур. К примеру, в Battlefield 5 достигается 80°С.
Я использовал высокие значения LLC, так как для частоты 5.3 ГГц предсказаний не было (проверил на нескольких образцах) и Vdroop был слишком высокий, поэтому я хотел получить более низкое напряжение в BIOS за счёт не самого лучшего (высокого) уровня LLC.

Проблема с offset voltage/adaptive при использовании высоких значений AC Loadline и почему 0.01 мОм для ACLL/DCLL – хорошо.

Немного технических бессвязных мыслей.

5.3 ГГц + Offset voltage +5 мВ + SVID Behavior:
Стандартное значение (AC/DC Loadline=0.6 мОм) + Loadline Calibration (по умолчанию Intel — 1.1 мОм = LLC3): как оказалось, это очень ненадёжная связка и непредсказуемое поведение системы в зависимости от теста. Порой в простое напряжение достигало 1.420 В, но случайные ошибки возникали. Но поведение напряжения Vcore было предсказуемым и контролируемым. К примеру, в Cinebench R20 в нагрузке напряжение составляло 1.320 В и не колебалось вверх/вниз. Но при нагрузке в Minecraft или Battlefield 5 напряжение колебалось в огромных рамках – от 1.305 В до 1.480 В, что делало значение Vmin случайным и слишком маленьким. Аналогичная проблема у меня была с платформой Z390, когда я пытался использовать AC Loadline для контроля напряжения при сильном разгоне. Похоже, что ACLL может повысить выходное напряжение в соответствии с формулой:

Vcore=vCPU + (ACLL * IOUT) — (LLC * IOUT) + vOffset

Но похоже, что при смешанных нагрузках не-AVX/AVX при загрузке не всех ядер, ACLL не поднимает напряжение в нужное время, что вызывает увеличение Vdroop, а в других случаях поднимает напряжение во время низкой нагрузки, слишком сильно увеличивая Vcore. Это не ошибка BIOS, а вопрос смешанной нагрузки с сильными импульсными помехами и реакцией AC Loadline на это – я столкнулся с этим на Z390 Aorus Master, когда пытался использовать Offset mode (Auto mode=offset + 0 мВ) с AC Loadline 1.6 мОм, LLC: Standard (1.6 мОм – по спецификации Intel) на 5.2 ГГц. К примеру, 1.32 В в тесте Cinebench R20 всё в порядке, но в Battlefield 5 от 1.28 В (возникали BSOD) до 1.46 В.

Единственный способ избежать этой проблемы – установить ACLL в значение 0.01 мОм, чтобы ограничить возможность увеличения выходного напряжения. Но в таком случае нам потребуется использовать более высокий уровень LLC. Помните: в offset mode чем ВЫШЕ уровень AC Loadline, тем НИЖЕ уровень Loadline calibration нужно устанавливать (ниже уровни LLC = более высокие сопротивления в мОм), поэтому вам нужно держать значения ACLL близко к значениям LLC (VRM Loadline).

Но если вы планируете использовать offset mode с ACLL 0.01 мОм, вам всё равно лучше использовать фиксированное значение Vcore или режим Adaptive Voltage. Единственным преимуществом offset mode с ACLL 0.01 мОм по сравнению с фиксированным напряжением (допустим, вы используется LLC Level 6 в обоих случаях) является возможность снижения напряжения во время простоя системы. Хотя, есть ещё одно преимущество — offset mode с ACLL 0.01 мОм позволит вам использовать технологию Thermal Velocity Boost для для увеличения Vcpu при увеличении температуры, но если вам потребуется использовать более высокие значения Loadline calibration, то результат будет хуже, чем с более высоким значением LLC.

Наличие новой функции настройки кривых V/F может помочь с нестабильностью работы при низких нагрузках при использовании C-States в offset или adaptive режимах. При использовании фиксированных смещений они применяются ко всем точкам напряжения для каждого шага частоты. Вы можете настроить кривую V/F по вашему усмотрению.

————————————————————
Тестирование Thermal Velocity Boost

Все напряжения установлены автоматически в соответствии со спецификацией Intel. В тесте 3DMark Fire Strike – все ядра работали на частоте 4.9 ГГц. Лично я не заметил применение технологии TVB как игрок даже с учётом хорошей системы охлаждения. Если у вас средняя система охлаждения, то эта технология может быть полезна, но настройка напряжений от ASUS работает настолько хорошо, что вы можете без проблем использовать эти рекомендации (предсказания). Я никогда не видел частоту 5.3 ГГц в играх. Только в обычной работе в Windows. Может быть, кто-то захочет проверить систему в Super Pi или установит приоритет использования ядер в Prime95 или в играх на 1 ядро, то публикуйте свои результаты исследований.

«Избранные» ядра – это два лучших процессорных ядра, которые получат максимальные множители частоты в соответствии с технологией TVB. Вы можете изменить эти ядра в BIOS (в расширенных настройках) и установить желаемые множители в режиме By Per Core Loading. Пользы от этого я не нашёл, но, возможно, это будет полезно для вас, если вы пытаетесь добиться частоты 5.3 ГГц при ограниченных нагрузках.

————————————
Редактор кривых V/F

Теперь вы можете конфигурировать значения смещения напряжения, используемые в режимах Adaptive / Offset Vcore, когда ваш процессор автоматически снижает частоту – то есть в сочетании с использованием технологий C-States, Speedstep и других. Это может помочь избежать проблем «холостого» BSOD, как это было на платформах Z390, когда вы хотели занизить напряжение, но оно менялось ко всему диапазону частот – от 800 МГц до 5 ГГц. При частотах ниже 2 ГГц такое возникает достаточно часто. Я не использую C-States (держу их отключёнными), но некоторым людям их работа нравится больше.

Точки V/F вы можете менять для 800 МГц, 2.5 ГГц, 3.5 ГГц, 4.3 ГГц, 4.8 ГГц, 5.1 ГГц, 5..2 ГГц и 5.3 ГГц.

Shamino вложил в работу над этой функцией много сил, поэтому я не верю, что многие OEM производители будут использовать это. Но если в вашем BIOS такая функция есть – используйте её.

—————————
Adaptive voltage

Чтобы использовать режим Adaptive Voltage вам просто необходимо знать ваше напряжение Vmin при используемом вами LLC. Вы можете посмотреть значение Vmin из строки предсказания в BIOS. После того, как вы нашли это значение и проверили систему на стабильность, вам нужно установить смещение так, чтобы напряжение с его учётом было всегда выше значения Vmin. Также вы можете обнаружить, что значение +0 мВ может продемонстрировать идентичный результат во время нагрузки, как и если бы напряжение было зафиксированным и сниженным для времени простоя системы.

Одним из преимуществ режима Adaptive Voltage является возможность снижения напряжения (даунвольтинга) в момент снижения процессором тактовой частоты в простое, если вы хотите использовать план энергосбережения во время простоя.

Дополнительное «turbo» напряжение позволит вам установить необходимое напряжение в режиме «P0», но это значение не может быть ниже, чем заявленный VID. Дополнительное «turbo» напряжение отличается от такового «Offset» в режиме «Adaptive» тем, что первое применимо только к частоте процессора в режиме «P0» (автоматический режим с использованием технологии TVB с множителем х53 для двух лучших ядер). Поэтому, если у вас система работает в лёгкой нагрузке, то вы можете установить множитель х55 для двух лучших ядер и дополнительное «turbo» напряжение, к примеру, 1.5 В. Это высокое напряжение, но озвучено оно только в качестве примера.

Смещение напряжений «Offset Voltage» применяется ко всему диапазону напряжений. Так +50 мВ смещение, к примеру, будет применено ко всем основным ступеням частот будь то 800 МГц или 5.2 ГГц. Вы можете редактировать значения V/F, чтобы установить более высокие смещения для более высоких тактовых частот. Очевидно, что есть достаточно точек ниже 5.1 ГГц и они нам не особо важны, так как нам наиболее интересными являются частоты свыше 5 ГГц. Таким образом построена и таблица, где небольшие шаги это 4.8, 5.1, 5.2 и 5.3 ГГц, а большие шаги допускаются при частотах ниже 4.8 ГГц.

———————————————-
Немного о AC/DC Loadline

AC Loadline помогает установить рабочее напряжение процессора, основанное на качестве процессора и его регулировки по току. Вы можете думать об этом как о Loadline Calibration со стороны процессора, а не на стороне подсистемы питания (Vdroop). Эта разработанная Intel спецификация проста в реализации, но не всегда даёт нам то, что необходимо и может из-за этого вызывать проблемы, если вы используете высокое значение ACLL в режимах Auto/Offset для Vcore.

Подсказка: в режимах Vcore Auto/Offset чем выше значение AC Loadline (CPU Input voltage) в мОм, тем выше должно быть значение Loadline Calibration в мОм (ниже уровень LLC или больше Vdroop). Никогда не комбинируйте высокие значения ACLL (мОм) с низкими значениями Loadline Calibration (мОм)!

CPU Vcore (мВ)= vCPU + (ACLL * IOUT) — (LLC * IOUT) + vOffset
Где: vCPU = базовый VID процессора в мВ (с учётом ACLL, DCLL=0.01 мОм + напряжение Thermal Velocity Boost в зависимости от температуры),
ACLL = AC Loadline в мОм
DCLL = DC Loadline в мОм
LLC = VRM Loadline (Loadline calibration) в мОм
iOUT = ток CPU в А
vOffset = напряжение смещения в мВ

Thermal Velocity Boost увеличивает vCPU в зависимости от температуры, так как при увеличении температуры процессору требуется увеличение напряжения. Я считаю, что каждые -2.5 мВ позволяют снизить температуру на 1°С, начиная от 100°С и каждые +2.5мВ увеличивают температуру на 1°С начиная с 0°С.

Для более детальных значений вы должны конкретно понимать связь между VID и Vcore.
CPU VID на самом деле vCPU + (ACLL * dI) — (DCLL * I) + vOffset

Я не знаю что означает dI. Эту формулу я получил от Elmor, но dI=d1-d0. Но приведённая выше формула объясняет наличие и использование DC Loadline равной VRM (LLC) Loadline в мОм.

Поэтому имеет смысл фраза, что AC Loadline управляет рабочим напряжением, при котором процессор пытается сохранить ACLL на уровне vCPU, если DC Loadline = VRM Loadline (LLC и DCLL также в мОм).

Это отлично работает при сбалансированной нагрузке в виде Prime95 или Cinebench.

Давайте возьмём в пример ток 100 А.

vCPU=1.215 В (1215 мВ) @ 5 ГГц
Температура 30°C (vCPU будет ниже, если температура процессора будет ниже и наоборот – это зависит от технологии TVB).
Ток 200 А в полной нагрузке в Cinebench R20.

Loadlines – безопасные значения от Intel. AC Loadline: 1.1 мОм, DC Loadline: 1.1 мОм. Loadline Calibration: level 3 (1.1 мОм). Помните, что DCLL используется только для измерения мощности (CPU VID/CPU package Power as CPU Package Power=VID * IOUT).

Loadlines: Intel’s fail safe: AC Loadline: 1.1 mOhms, DC Loadline: 1.1 mOhms. Loadline Calibration: level 3 (1.1 мОм). Remember DCLL is used only for power measurements (CPU VID/CPU package Power как CPU Package Power=VID * IOUT).

Мы можем использовать режим Vcore offset +005 В (близко к 0 мВ) или режим Adaptive +0 мВ.

Температура в нагрузке – 70°C. Нужно немного расчётов.

Увеличение температуры 70°C-30°C=40°C. 40 * 2.5 мВ = 100 мВ. (Thermal Velocity boost)
Итак vCPU = 1215 мВ + 100 мВ = 1315 мВ.

Vcore: 1315 мВ + (1.1 * 200) — (1.1 * 200) + 0
1315 + (220 мВ) — (220 мВ) =1.315 В напряжение в нагрузке.

В этом примере напряжение в тесте Cinebench должно быть около 1.315 В. Если бы температуры были ниже, то и напряжение могло бы быть ниже.

Первые 220 мВ AC Loadline – запрос от 200 А тока (200*1.1 мОм). Вторые 220 мВ – запрос от Vdroop на VRM.

Теперь немного важной информации о том, почему я придают ценность обоим этим значениям.

Автоматизация AC Loadline отлично работает для хорошо сбалансированных нагрузок типа Prime95 или Cinebench. Но в случае с «рваной» нагрузкой типа Battlefield 5 значения ACLL и Vdroop не всегда синхронизируются с постоянным изменением нагрузки.

Вы думаете, что ваше значение Vcore должно быть примерно постоянным в диапазоне 1.280-1.340 В. Но по факту это не так – когда вы играете в Battlefield 5 эти значения могут быть ниже 1.240 В и выше 1.400 В. Вернёмся к примеру с Cinebench.

1315 мВ + (220 мВ)=1.535 В при токе 200 А. Это абсолютный максимум, который VRM предоставит процессору до момента возникновения Vdroop. Это устанавливается лимитом AC Loadline SVID, который составляет 1.520 В, но ASUS позволяет VRM своих плат плат активировать команду 33h (IMPV8), что позволяет SVID увеличить напряжение до 1.720v. Vdroop при 200 А опустит напряжение обратно до 1.315 В.

Проблема заключается в том, что по некой причине (это не относится к ASUS, а к дизайну от Intel, так как на Gigabyte Z390 Aorus Master работает также) иногда AC Loadline не увеличивает рабочее напряжение до необходимых значений (например, это может быть 1.350 В при 200 А) или VRM может видеть очень низкую нагрузку и не применять нужный Vdroop для ответа на запрос ACLL (у вас это может быть 1.45 В). Это может вызвать BSOD, если напряжение упадёт слишком сильно (к примеру, 1.250 В вместо требуемого минимума 1.300 В) или для вашего процессора требуется большее рабочее напряжение.

Для исправления такой ситуации надо держать AC Loadline на уровне 0.01 мОм. Но это также потребует более высокий уровен LLC – 3 и выше.

Для сильного разгона вы можете использовать высокое напряжение, сделав его фиксированным, а также установить высокий уровень LLC, что позволит сделать напряжение в простое не таким высоким. Но ситуация в стресс-тестах будет достаточно плохой – вам придётся использовать adaptive voltage с дополнительным turbo voltage для корректировки напряжения. Помните, что нельзя использовать слишком высокие уровни LLC при использовании adaptive voltage.

Дополнительное предупреждение: в режимах adaptive, offset или auto для Vcore повторим ещё раз: никогда не комбинируйте высокие значения AC Loadline (>0.9 мОм) с высокими значениями уровней LLC (низкие значения мОм)!

При фиксированном значении Vcore значение ACLL не важно, так как оно не используется для Vcore, поэтому его можно игнорировать.

————————————————————
Ещё немного о Thermal Velocity Boost

Результат действия технологии Thermal Velocity Boost зависит от нескольких составляющих, некоторые из которых появились только в процессорах 10-го поколения, а некоторые перенесены из 9-го поколения (технически, это было и в Kaby Lake, но никак не рекламировалось).

В вашем распоряжении технология Turbo Boost 3.0, которая позволяет некоторым ядрам достигать настройки, заданные технологией TVB – 4.9 ГГц для всех ядер при температуре ниже 75°С (иначе будет работать технология Turbo Boost 2.0 – 4.8 ГГц для всех ядер) или 5.3 ГГц для двух лучших ядер. Большинство современных игр используют несколько ядер, устанавливая им одинаковый множитель.

Также у вас есть новый параметр, получивший название vMaxStress. Он ограничивает запросы VID, поэтому процессор будет снижать тактовую частоту вместо запроса более высокого VID. Снижение тактовой частоты будут происходить до тех пор, пока значение VID не будет превышать 1.45 В. Вы можете включить этот параметр (vMaxStress), если вам нужно работать на невысоких частотах или если вы боитесь слишком высоких напряжений во время обучения разгону своего процессора. Это можно назвать защитным механизомом.

Ограничение множителя TVB был впервые замечен в ноутбуках, использующих процессоры 8-го поколения, где таким образом был реализован механизм троттлинга. Но он был отключён по умолчанию, так как такая система начинала работать при температуре свыше 50°С, что для ноутбуков было полностью бесполезно.

В случае с нашими настольными системами, ограничение множителя системой TVB снизит его всего на 1 шаг вниз при достижении порога температуры в 70°С. Например, у нас будет не 4.9 ГГц, а 4.8 ГГц.

Вы можете настроить эту функцию для двух лучших ядер. Если у вас очень хороший процессор и его пара лучших ядер могут работать на частоте 5.5 ГГц при температуре менее 70°С, то технология TVB при превышении этого порога температуры снизит частоту всего на 1 шаг – то есть, до 5.4 ГГц.

Оптимизация напряжения TVB включена по умолчанию.

Оптимизация напряжения TVB приведёт к масштабированию CPU VID в зависимости от температуры. При чём, масштабирование отключается на множителе х44 для Core i9-10900K. Это очень похоже на ситуацию с платформой Z390:
x53: VID снижается на 1.55 мВ каждые 1°C начиная со 100°C (-1.55мВ /-1°C)
x52: -1.45 мВ / -1C
x51: -1.15 мВ / -1C
x50: -0.9 мВ / -1C
И так далее.

При множителе х45 это составляет всего -0.05 мВ для каждого 1°С и отключается при множителе х44.

Так что, как вы можете видеть, технология при высоких (х53) множителях работает очень агрессивно.

Отключение этого параметра установит ваш VID в максимально высокое значение для установленного множителя, словно процессор функционирует при температуре 100°С.

——————————————————
Для тех, кому лень много читать

Просто установите автоматическое управление напряжением и автоматический выбор уровня LLC, а также нужный вам множитель. Это вполне хорошо работает до 5.0 ГГц. Попробуйте и убедитесь сами! По моим собственным тестам, предсказания параметров для 4.8-5.0 ГГц (без AVX) оказываются на 100% точными.

Для частоты 5.1 ГГц точность предсказаний падает, а для 5.2 ГГц она теряет в точности ещё больше. Shamino ожидал этого.

Не стесняйтесь публиковать результаты предсказаний в своих системах для частот 4.8-5.0 ГГц с вашими образцами Core i9-10900K для не-AVX сценариев работы (примните, что Prime95 small FFT без AVX и Realbench 2.56 – для нас основные тесты).

—————

Большое спасибо
Shamino за предоставление системы для тестирования, а также обратной связи, без которой подготовка этого материала была бы невозможной.

Копирование любых материалов сайта допускается только с разрешения Администратора сайта (профиль, e-mail) и со ссылкой на источник.

По вопросам сотрудничества можно и нужно обращаться по этим же адресам 🙂

Источник: http://greentechreviews.ru/2020/05/24/rukovodstvo-po-razgonu-protsessora-core-i9-10900k-na-materinskih-platah-asus-rog-maximus-xii/

MSI Afterburner: как разогнать видеокарту в играх и майнинге — power limit, мониторинг, core voltage

Программа для:

  • Разгон

Как пользоваться

Чтобы пользоваться программой, необходимо сначала ее скачать, установить и настроить. Рассмотрим все эти пункты.

Для начала необходимо скачать программу.

Для этого заходим на официальный сайт MSI Afterburner и листаем сайт вниз до секции с загрузкой:

Как установить MSI Afterburner

После того как Вы скачали архив, разархивируйте его, перейдите в разархивированную папку и запустите установочный файл «MSIAfterburnerSetup.exe». Куда устанавливать — решать только Вам, но желательно использовать стандартные системные пути — C:\Program Files (x86)\MSI Afterburner — это для Windows 10.

Нажимаем везде «далее».

Дойдя до пункта «выберите компоненты программы для установки» — снимаем галочку с «Riva Tuner Statistics Server».

После жмем «далее» и ждем окончания установки.

После установки запускаем MSI Afterburner.

MSI Afterburner очень прост в использовании. Для того, чтобы понять как работает программа, изучим параметры и за что они отвечают.

Настройка MSI Afterburner

  1. Gpu Clock — это показатель тактовой частоты видеокарты. Если у Вас ферма из нескольких карт, то будет показываться выбранная видеокарта.
  2. Core Voltage (mV) – этот ползунок отвечает за энергопотребление видеокарты, Вы можете как разогнать, так и понизить этот показатель. Чем меньше Core Voltage, тем меньше затрат на электроэнергию: понижение этого показателя позволит экономить на электричестве, а в случае если Вы уперлись «в потолок» по энергопотреблению, данная функция позволит понизить потребление тока видеокартами, и даст возможность установки дополнительных карт, если вы майнер.
  3. Power Limit – отвечает за энергопотребление карты. При большем разгоне, то есть если Вы хотите сильно разогнать видеокарту, то и энергопотребление необходимо добавлять, иначе карта не будет удерживать частоты и сбрасывать их до заводских. Показатель часто заблокирован . Ниже скажем как его разблокировать.
  4. Temp. Limit – ползунок отвечающий за критическую температуру видеокарты. В случае превышения этого (установленного Вами) показателя, видеокарта сбросит частоты (уйдет в throttling).
  5. Core Clock (MHz) – это разгон частоты GPU (графического процессора) видеокарты.

Данный разгон необходим для увеличения хешрейта вашей видеокарты во время майнинга или для повышения производительности (ФПС) в играх.

Memory Clock (MHz) – Это разгон памяти видеокарты. Обычно это дает небольшой прирост в играх, но в майнинге прирост ощутим.

Fan Speed – ползунок, отвечающий за скорость вращения вентиляторов видеокарты. Где 100% — это максимальная скорость вращения, а 0% — это минимальная скорость. Если Fan Speed заблокирован, то его нужно разблокировать, нажав на слово «Auto», которое находится рядом. В режиме «Auto», вентиляторы будут сами автоматически выставлять процент нагрузки, в зависимости от температуры GPU. Но при майнинге в режиме «Auto» этот показатель будет почти всегда 100%, так как сам процесс майнинга сильно нагревает видеокарту.

Fan Speed – если ваша видео карта сильно греется, мы все равно не рекомендуем выставлять 100% оборотов, так как тем самым быстрее исчерпается ресурс кулеров (а это одна из самых частых поломок).

  • Кнопка, открывающая расширенные настройки.
  • Температура ядра видеокарты. Если в ферме несколько видеокарт, то отображается последняя выбранная видеокарта и ее температура.
  • Start Up – позволит добавить msi afterburner в автозагрузку. Если иконка обведена (в данном случае красным, но бывает и другого цвета, так как можно установить другую тему оформления), то MSI Afterburner будет автоматически запускаться при включении компьютера (фермы).
  • Profile – Это показатели от одного до пяти. Они отвечают за сохранение вашей конфигурации. То есть, Вы можете установить нужный разгон (памяти, ядра), нужную скорость вращения вентиляторов и так далее и сохранить это на любую цифру от 1 до 5. Если при этом активна функция «Start Up» то при перезагрузке или включении Вашей фермы, она будет сразу применять все настройки к видеокартам, которые Вы задали.
  • При увеличении разгона видеокарты по памяти и по ядру, лучше всего прибавлять по 10 единиц.

    1. Название выбранной видеокарты
    2. При нажатии на слово «GPU», выйдет список всех видеокарт. Выбирайте каждую карту по очереди и устанавливайте для нее разгон и скорость вращения кулеров.
    3. Сброс всех настроек разгонов до заводских.

    Так же разгонять видеокарты можно прямо в майнерах. Смотрите примеры разгона:

    Смотрите видео

    Прежде чем мы начнем, помните, что разгон небезопасен, и при настройке вашей видеокарты есть риск нанести непоправимый ущерб.

    MSI Afterburner упрощает разгон, но настоятельно рекомендуется действовать с изрядной долей здравого смысла.

    Если вы чувствуете, что вы слишком далеко зашли с разгоном, немедленно остановитесь и обратитесь за советом к компетентным источникам, прежде чем продолжить.

    Как разогнать видеокарту

    Разгон в MSI Afterburner придерживается стандартной техники разгона и тестирования, чтобы найти самые высокие и наиболее стабильные настройки. Не забывайте нажимать кнопку «Применить» после любых изменений.

    1. Для начала установите ползунки « Power Limit » и « Temp Limit » на максимум. С этими настройками видеокарта будет более энергоэффективной и будет достигать более высоких температур. Видеокарта никогда не достигнет верхнего предела, если не произойдет серьезная неисправность оборудования, поэтому не удивляйтесь, если максимальная температура покажется опасно высокой. Производители карт определяют эти параметры, и поэтому они считаются безопасными, и нет риска повредить видеокарту.
    2. Увеличьте немного ползунок тактовой частоты ядра. Каждое деление ползунка соответствует одному МГц выше или ниже штатной тактовой частоты, в зависимости от того, двигаете ли вы вверх или вниз. Мы рекомендуем прибавлять от 20 до 30 МГц. Не забудьте нажать «Применить» после увеличения тактовой частоты.
    3. Для каждого приращения запустите Kombustor в фоновом режиме и проверьте наличие артефактов, мерцающего экрана, черных вспышек или сбоев. Отведите пару минут на наблюдение за каждым изменением.
    4. Как только вы столкнетесь с постоянным количеством графических проблем, прекратите повышать тактовую частоту. Не беспокойтесь о необычном поведении; это вполне ожидаемо, и это способ для GPU сообщить нам, что он достиг максимальной мощности. Сбои и черные экраны сбрасывают драйвер видеокарты, после чего вы сможете восстановить тактовую частоту через несколько секунд.
    5. Уменьшайте тактовую частоту ядра небольшими приращениями примерно на 5 МГц, пока не исчезнут все артефакты / проблемы с графикой и Kombustor не станет стабильным. Мы также рекомендуем протестировать любые изменения в контексте требовательного майнера или игры. Поднимите настройки до ультра, чтобы заставить видеокарту усердно работать, чтобы нагляднее увидеть изменения. Если у вас возникнут проблемы, уменьшите тактовую частоту.
    6. Далее мы применим тот же стресс-тест к тактовой частоте памяти, но с большим шагом. Мы рекомендуем от 50 до 100 МГц.
    7. Как только вы столкнетесь с постоянными графическими проблемами в Kombustor, уменьшайте тактовую частоту памяти небольшими шагами, пока не найдете стабильную скорость. Также протестируйте в игре.
    8. Теперь мы хотим протестировать новые тактовые частоты ядра и памяти в течение длительного периода. Запустите Kombustor и дайте ему поработать добрых 10 минут, проверяя наличие артефактов и сбоев. Уменьшайте скорость небольшими приращениями, пока не получите стабильную комбинацию обоих.
    9. Когда вы будете довольны общей стабильностью, не забудьте сохранить настройки в виде профиля, щелкнув значок дискеты, а затем одну из кнопок профиля 1-5.

    Расширенные настройки

    Нажав на «шестеренку» (настройки), откроются все настройки MSI Afterburner.

    1. Если ваши видеокарты одной и той же модели, одного и того же производителя, то лучше всего поставить галочку «Синхронизировать настройки одинаковых ГП». Это поможет вам (если у вас ферма из нескольких карт) сделать настройки разгона для одной карты, а применится сразу ко всем.
    2. Советуем поставить все эти галочки для более удобной работы с MSI Afterburner.

    Для применения заблокированных и расширенных настроек можно использовать файлы конфигурации.

    Чтобы перейти в режим редактирования конфигурации необходимо нажать правой кнопкой мыши по ярлыку MSI Afterburner и выбрать пункт « Расположение файла ».

    Откроется папка с установленной программой. В ней мы увидим много файлов. Нам нужно выбрать папку « Profiles »:

    В ней лежат файлы конфигурации:

    Редактировать их можно в любом текстовом редакторе в режиме администратора. Весьма удобно для редактирования использовать стандартный Блокнот Windows 7/8/10, либо Notepad++ (он еще более удобен).

    В этой папке лежат следующие файлы:

    • MSIAfterburner.cfg – основной файл базовой конфигурации программы (лежит в директории «Profiles» по пути C:\Program Files (x86)\MSI Afterburner\Profiles );
    • файлы с расширением *.cfg с, начинающимся с VEN_ … описывают настройки разгона и андервольтинга для каждой видеокарты. Количество этих файлов будет сопоставимо с количеством ваших видеокарт.

    До начала редактирования разумно сделать резервные копии этих конфигурационных файлов в другую папку для того, чтобы все восстановить, если что-то пойдет не так.

    Если в конфигурационных файлах окажутся синтаксические ошибки, то и андервольтинг и разгон не сработают. А в интерфейсы программы ползунки окажутся заблокированными.

    Как разблокировать core voltage

    Чтобы разблокировать вольтаж нужно в главном файле конфигурации MSIAfterburner.cfg в разделе Settings в режиме администратора указать единицу в следующих опциях:

    UnlockVoltageControl=1 (разблокировать управление вольтажом)

    UnlockVoltageMonitoring=1 (разблокировать мониторинг вольтажа)

    StartupDelay=0 (задержка времени для применения разгона/андервольтинга)

    ForceConstantVoltage=1 («Принудительное постоянное напряжение»)

    Для АМД

    Если вы хотите включить режим неофициального оверклокинга, то внесите или добавьте изменения в следующие строки:

    [ATIADLHAL] UnofficialOverclockingMode=1 UnofficialOverclockingEULA=I confirm that I am aware of unofficial overclocking limitations and fully understand that MSI will not provide me any support on it

    Для Nvidia

    Для Nvidia в файле MSIAfterburner.cfg можно изменить значения вольтажа при настройке разгона/андервольтинга с помощью кривой «Curve» (ее часто называют «курвой»):

    VFCurveEditorMinVoltage = 700 (минимально возможный вольтаж, можно установить в 650 мВ)

    VFCurveEditorMaxVoltage = 1250 (максимальный возможный вольтаж, в милливольтах)

    Определяем настройки для каждой карты отдельно

    Файлы с расширением *.cfg с названием, начинающимся на VEN_1 … позволяют применять разгон и даунвольтинг для каждой карты.

    Пример

    Синтаксис этих файлов следующий:

    Последняя строка заставит программу обращаться к контроллеру видеокарты через модуль регулировки напряжения от nVIDIA.

    Как понять какой из файлов *.cfg к какой карте относится?

    Для этого можно сопоставить номер шины ( BUS ), которая указана в названии:

    В графическом интерфейсе можно узнать номер шины нажав на значок i :

    Сопоставив идентификаторы шины нужной карты в окошке « Информация » с шиной в названии файла *.cfg , мы поймем, что это одна и та же карта, если в системе у нас их много.

    Теперь мы можем вносить изменения дальше.

    В конфигурационных файлах *.cfg для каждой видеокарты мы укажем значения температурных лимитов (в градусах по Цельсию), Power Limit (мощности в процентах), Core и Memory Clock (частоты ядра и памяти в мегагерцах), режимы работы вентиляторов ( Fan Speed ) карты и частоту их оборотов.

    С помощью графического интерфейса мы так же можем указать автозапуск приложения и нужного профиля разгона, вольтаж ядра, параметры вентиляторов и т.д.

    Лучше выключить опцию синхронизации настроек одинаковых ГП потому, что даже карты одного производителя как правило имеют собственный, уникальный потенциал для разгона.

    Рекомендуем поставить галочку на опцию « Запускать вместе с Windows ».

    Как включить управление вентиляторами

    При майнинге мы рекомендуем выставить минимальную скорость вращения на 40-60%. Далее мы будем подбирать приемлемые настройки, позволяющие работать карте на оптимальной температуре, и в то же время не повышать шум и износ подшипников вентиляторов.

    Для авто-управления частотой вращения вентиляторов графических адаптеров согласно настроенной кривой вращения, в графическом интерфейсе надо подключить кнопку « Auto »:

    Как добавить MSI Afterburner в автозагрузку

    Для авто применения опций разгона для всех видеоплат необходимо выставить нужные параметры и сохранить их в профиль.

    Чтобы автоматически применить профиль нужно нажать на кнопку со значком Windows – « Startup ».

    Использование персональных параметров видеокарт станет выполняться при каждом запуске фермы или компьютера.

    Так же нужно нажать на шестеренку « Опции » и включить галочку « Запускать вместе с Windows ».

    Как разблокировать ползунки Core Voltage, Power Limit и Temp Limit

    Пример неактивной опции:

    Чтобы разблокировать кор вольтаж, разгон и fan speed необходимо нажать на шестеренку настроек:

    Здесь мы можем отметить галочкой нужные нам опции – « Разблокировать управление напряжением » и « Разблокировать мониторинг напряжения ».

    Так же разблокировать Core Voltage можно в файлах *.cfg для каждой видеокарты отдельно путем включения функции VDDC_Generic_Detection .

    Если там нет таких строк, то нужно вставить их в каждый конфигурационный файл самостоятельно.

    Теперь ползунок Core Voltage становится активным.

    Так же не забудьте в настройках поставить галочки « Разблокировать управление напряжением » и « Разблокировать мониторинг напряжения ».

    Аналоги

    К аналогам этой программы относят:

    1. overdriveNTtool
    2. RivaTuner
    3. CAM (только мониторинг)
    4. EVGA PrecisionX 16
    5. NVIDIA Inspector (только вывод информации о видеокарте)
    6. AgaueEye (для отображения FPS в Windows)
    7. Nvtray

    Вывод

    MSI Afterburner – простая и удобная в обращении программа. Очень легко с ее помощью разгонять видеокарты. В настройках меню «интерфейс» вы всегда можете поменять скин программы.

    Так же MSI Afterburner, показывает температуру и частоту видеокарты.

    Это очень удобная и незаменимая программа для майнинга!

    Источник: http://bytwork.com/soft/msi-afterburner

    Как разогнать процессор AMD — пошаговое руководства с картинками

    Мысль разогнать компьютер приходит практически к любому пользователю, но стоит ли? Разгон видеокарты – дело привычное для большинства пользователей, в отношении процессора дела обстоят иначе. Отчасти потому, что в результате оверклокинга можно потерять больше, чем приобрести. Особенно, когда разгон вызвал сильное повышение температуры ядра. Но программное обеспечение постоянно эволюционирует, а технические параметры «железа» ограничены. Старые модели процессоров остро нуждаются в разгоне, поскольку последние драйверы не могут сотворить чуда. Зато правильный оверклокинг может.

    Когда требуется разгон

    Для железа, выпущенного после 2018 года процедура может не быть обязательной. Медленная обработка данных, общие лаги и подвисания не всегда зависят от процессора. Перед разгоном исключают возможное влияние на скорость работы ПК других факторов. Если замедление было вызвано не недостатком частот, процедура лишь усугубит проблему, приведет к скорейшему износу. Последние модели процессоров не нуждаются в разгоне – это лишнее для них, так как они уже способны на многое.

    Перед оверклокингом стоит понять – возможен ли он в принципе для машины пользователя. Если чипсет материнской платы не был разработан с учетом ускорения ядра, о разгоне лучше забыть. Но большая часть материнских плат не блокирует разгона.

    Частоты и термины

    Частоты, относимые к работе процессоров, имеют разные обозначения. Для верного разгона нужно понять, какие функции закреплены за разными частотами, их наименованиями – путаница может серьезно повредить ПК.

    1. Частота CPU. Это частота самого ядра. Наименования: тактовая частота CPU, CPU-скорость. На ней компьютерный центральный процессор исполняет алгоритмы. Значение указывают в описании товара в каталогах. Для увеличения общей производительности цифру поднимают при оверклокинге.
    2. Базовая частота. Значение также называют эталонной частотой. По умолчанию составляет 200 МГц. Участвует в формулах расчета других частот для обеспечения правильной работы.
    3. HyperTransport частота. Отвечает за исполнение алгоритмов интерфейса серверного моста и центрального процессора. Значение не превышает цифры для серевного моста (как правило, эти показатели равны)
    4. Частота северного моста (northbrige). Значение может превышать показатель для HyperTransport или равняться ему, но не должно быть ниже. Увеличение показателя приводит к поднятию быстродействия контроллера памяти.
    5. Частота DRAM, она же – скорость/частота памяти. Значение измеряют в МГц. За счет нее функционирует шина памяти.

    Разгон Athlon

    Существуют разные рабочие методы разгона Athlon (разной степени сложности для пользователя и самого ПК), но компания AMD все-таки снизошла до проблем рядовых юзеров и выпустила программу для разгона своей капризной продукции — AMD Overdrive. Безопаснее и проще всего действовать через нее – поддерживается большинство современных чипсетов, а интерфейс прост и понятен.

    После установки потребуется только:

    1. Активировать Performance Control.
    2. Выбрать опцию Select all Cores и сдвинуть ползунок с обозначением CPU Core 0 Multiplier. Текущая скорость (с учетом изменений) отображается в Current Speed.
    3. Просмотреть текущую температуру процессора и повторить небольшое увеличение. Его проводят постепенно, небольшими шагами. Максимально допустимый разгон не должен сопровождаться нагревом выше 60 градусов. Лучше всего сдвигать ползунок понемногу, увеличивая значение максимум на десяток.
    4. Корректировка вольтажа. Недостаточно просто изменить значение частоты – для стабильной работы вносят изменения в вольтаж. Для этого перемещают регулятор CPU VID. Если не менять напряжения, оверклокинг приведет к аварийному отключению системы.

    После каждого движения ползунка работу компьютера оценивают не только по температуре. Для этого подходит Perfor­mance Control/Stability Test. Можно запускать тестирование в AIDA 64, Prime95.

    Разгон через БИОС – простой алгоритм действий по ускорению процессора, без загрузки Windows. Основное условие – материнская плата должна поддерживать процедуру. Независимо от типа BIOS, базовая последовательность действий для оверклокинга не меняется – отличия состоят только в интерфейсе.

    Второе условие – БИОС должен иметь последнюю версию прошивки. С этим могут возникнуть трудности, но, скорее, бытовые. Дело в том, что перепрошивка БИОС требует наличия источника резервного питания. Можно рискнуть и прошивать без него, но если случится перепад напряжения, выбьет пробки или просто внезапно отключится энергия во время процесса – компьютер станет кирпичом, так как не сможет выполнять базовые алгоритмы запуска. Попытка выполнить оверклокинг на устаревшей версии BIOS зачастую ведет к износу оборудования, критическим ошибкам, или, в лучшем случае, отсутствию разгона.

    Действуют по следующим этапам:

    1. Для ускорения ядра, войдя в БИОС, пользователь должен откорректировать показатели в графе Frequency. Достаточно повысить показатель на 100МГц (например, с 3500 до 3600). Это итоговая частота.
    2. Графы CPU Ratio и BCLK Frequency – это показатель значения множителя и частота шины соответственно. Изменения должны соответствовать формуле «Итоговая частота = множитель * шину».
    3. Чтобы проверить результат изменений, их сохраняют перед перезапуском. После загрузки проводят тест. Можно запустить «требовательную» игру, но удобнее воспользоваться утилитами по типу AIDA 64, Prime95.
    4. Корректировка вольтажа. Изменение частот в утилите или Bios одинаково влияет на алгоритмы. Скорее всего, система вылетит в синий экран. Это нормально – за недостатком энергии изменения в БИОС либо сбросятся к настройкам по умолчанию, либо это будет обычное аварийное отключение. В любом случае, это «лечится» — в BIOS в графе Voltage. Его слегка повышают и снова проводят проверку, пока не будет достигнуто оптимальное значение.

    Преимуществом разгона процессора АМД через БИОС является полная его безопасность. Даже если он приведет к критической ошибке, сбросить настройки до значений по умолчанию – дело двадцати секунд. Потратив время на подбор настроек можно обеспечить безопасный оверклокинг.

    Программа для разгона, а иногда и БИОС не поможет, если установленный процессор относится к Duron или Athlon (Thunderbird). Железо этого вида требует наличия на материнской плате сокета на 462 контакта. Этот сокет – PGA-socket подходит к обоим типам. Они отличаются только размером памяти кэша уровня L2.

    В остальном процессоры схожи, общей проблемой также является непростой разгон. Сокет процессоров не приспособлен к изменениям резисторов, что ограничивает оверклокинг. Ускорение производят путем повышения частоты шины – в зависимости от чипсета, эта опция может быть доступна в БИОС (но очень редко). При этом повышение вольтажа более чем на 10% недопустимо. Пытаться разогнать процессоры этого типа самостоятельно, в отсутствие необходимых опций, не стоит – есть риск внести повреждения, а не изменения.

    Не существует рабочих утилит для полноценного, по всем фронтам, разгона этих процессоров – их конструкция этого банально не позволит. Некоторые умельцы ускоряют данные модели, терпеливо подбирая железо и с паяльной лампой в одной руке. Для пользователя-любителя разгон станет задачей невозможной.

    Разгон Phenom

    Процессоры Phenom отлично поддаются разгону через AMD Overdrive, за редким исключением. Процедуру проводят по схожему алгоритму. Имеет смысл разгонять процессоры линейки Phenom II. Первое поколение, даже при максимально доступном разгоне, не дает заметного улучшения производительности – оно безбожно устарело. Процессоры второго поколения имеют высокий потенциал – сами по себе они конкурентоспособны, а в разгоне действуют лучше Intel Core 2 Quad. Хотя, все равно не дотягивают до уровня i7.

    Для улучшения Phenom учитывают, что в результате ядро будет нагреваться очень сильно – перед разгоном пользователь убеждается, что охлаждение работает исправно. Последовательность действий для разгона Athlon и Phenom не отличается.

    Главная особенность разгона заключается в том, что хоть ядро и разгоняют до немногим ниже 4 4ГГц, при ускорении выше 3,8 происходит отключение опции Cool’n’Quiet. Это вызывает сильный его нагрев – поэтому охлаждение критически важно для увеличения производительности процессоров Phenom. Новая система охлаждения должна максимально эффективно воздействовать на само ядро, а материнская плата – иметь собственное охлаждение, чтобы не возникало ошибок из-за перегрева компонентов.

    На рынке AMD продукция Phenom хорошо востребована – несмотря на проблемы с перегревом, разгон «феномов» позволяет выжать максимум производительности.

    Разгон Ryzen

    Ускорение этих процессоров – самая простая задача. Единственное, что может помешать пользователю – чипсет. Он должен поддерживать разгон. Например, чипсет А320 для Ryzen не даст пользователю разогнать процессор. Допустимость разгона указана в описаниях материнских плат.

    В результате процессор будет греться не меньше Phenom’a – перед усилением ядра ставят мощное охлаждение.

    Если чипсет позволяет, разгон проводят в БИОС по общему алгоритму. Но лучше всего сделать это через AMD Overdrive. В отношении Ryzen она работает лучше всего – возможна тонкая настройка значений без ограничений для пользователя.

    Альтернативная утилита — AMD Ryzen Master. Но, если сравнивать обе программы, последняя имеет сложный интерфейс, в котором трудно разобраться, если разгон для пользователя в новинку. Потраченное время окупится с лихвой в отношении обеих программ – они позволяют «обработать» по максимуму, без страха совершить ошибку. Утилиты для разгона процессоров АМД используют в комбинации с программой-тестировщиком. Тест работы системы после ускорения вовремя указывает на ошибки.

    Разгон процессора – непростая процедура, рассчитанная на опытного пользователя. Параметров, которые подошли бы для каждого процессора, просто нет. На работоспособность системы в результате оверклокинга влияет слишком много факторов: модель процессора, чипсет, охлаждение, версия драйвера чипсета, параметры блока питания и качество охлаждения. Всегда есть вероятность потратить время зря, либо допустить незаметную, на первый взгляд, ошибку, которая запустит износ оборудования.

    Пользователю, решившему заняться оверклокингом, следует запомнить, что не бывает много времени, потраченного на разгон. Лучше перепроверить все лишний раз и подобрать нужные параметры, чем нанести ущерб сложной системе.

    Видео: Разгон процессора AMD [AMD Overdrive]

    Источник: http://itportal.pro/hardware/693-kak-razognat-processor-amd-poshagovoe-rukovodstva-s-kartinkami.html

    Как разогнать процессор если пишет CURRENT, POWER LIMIT

    Доброго времени суток, товарищи оверклокеры и будущие оверклокеры, а также просто читатели.

    В этой статье я напишу как разогнать процессор AMD Phenom II х4 965ВЕ. Я не собираюсь выдвигать эту писанину как единственную, неповторимую и безошибочную инструкцию к разгону. Я постарался написать ее предельно простым и понятным языком. Все выводы и рекомендации здесь обосновываются на моем личном опыте и наблюдениях, а также многочисленных FAQ’ах оверклокерских форумов, чтении и анализе различных статей по разгону, ну и, само собой, обмене опытом при общении на разных оверклокерских форумах.

    В этой статье вы не встретите никаких философских размышлений о природе разгона, о его целях и задачах и т.д.

    Здесь я простым, обычным языком поделюсь своим опытом по разгону и дам ряд рекомендаций и советов.

    Заранее предупреждаю, что статья предназначена для людей компьютерно-грамотных, более-менее понимающих сленг компьютерщиков, умеющих самостоятельно разобрать/собрать из комплектующих системный блок, разбирающихся и различающих процессоры хотя бы по их названиям, знающих их основные характеристики, умеющих залезать и немного копаться в биос, но, тем не менее — не разбирающихся (плохо разбирающихся) или только начинающих разбираться в разгоне.

    Уже опытные люди, ничего нового из этой статейки не найдут — разве что могут немного «встряхнуть» память, да указать мне найденные ими ошибки.

    Теперь об ошибках. Поскольку я — человек, то могу допустить ошибки. Чем больше вы их заметите — тем лучше. Напишите тут — и я их исправлю. С вашей помощью эта статья может стать еще лучше, еще информативнее. Если вы считаете, что я недостаточно осветил некоторые вопросы — тоже пишите.

    На самом деле я должен был написать эту инструкцию давно — года два-три назад. По тем или иным причинам это не удавалось. Главной причиной, само собой, является могучая лень. Тем более, по-прежнему есть люди, которые интересуются разгоном процессоров феном2.

    Как и полагается в любой статье по разгону — дискеймер:

    Напоминаю, что вы действуете на свой страх и риск. Я за ваши манипуляции (после прочтения моей и не моей тоже статьи) с вашим и не вашим компьютером и за последующие за ними негативные и позитивные тоже последствия не отвечаю.

    Причиной создания этой статьи, является обращение ко мне новичков за советами по разгону процессоров, конкретно — AMD Phenom II (далее — просто феном2). Еще учесть следует то, что я вспоминаю молодого себя, когда ничего не умел и не знал. И о существовании таких гайдов даже и не подозревал.

    Немного про себя [ эту часть я настоятельно рекомендую пропустить, ибо ничего полезного она не несет].

    [Кстати, вопрос всем — может эту часть стоит удалить? Может она и не нужна вовсе статье?]

    Начал впервые разгон с 2008 года — первый свой процессор Intel Pentium Dual Core E 2160, самостоятельно — без чтения соответствующих материалов и знания чего-либо — даже самому удивительно, разогнал постепенно по шине до

    2400 МГц — тогда я вообще не знал, что напряжение на ядре надо увеличивать. Но все равно — материнка была откровенным УГ с убогим же биос, которая позволяла лишь шину менять, напряжение же было залочено. Потом я купил хорошую матплату на MSI (названия уже за давностью лет не помню) и вроде бы (как мне тогда казалось) отличный по крайней мере — внешне, как мне тогда казалось кулер Asus Triton 75 который на деле оказался фуфлом и разогнал с увеличением напряжения до

    3300 МГц. Затем купил дорогущий в те времена Zalman CNPS 9700 A LED. В те времена я даже и не догадывался, что мосфеты при увеличении напряжения имеют свойство греться, да и вообще ничего не знал про то, как осуществляется питание процессора, что такое температурные пределы и троттлинг, что такое ФАКи и прочее — вообще с интернетом в нашем городе те времена все было очень печально.

    Соответственно, тогда я не читал никаких статей и форумов поскольку инета не было . Приходилось все самому постигать опытным путем — медленно, зато верно. Просто удивительно, что тогда я ничего не спалил. Причиной этому, скорее всего, было то, что я неосознанно применял методику медленного разгона. Я и понятия не имел про тестирование на стабильность процессора и памяти. О том, что разгоняют видеокарту — вообще не знал 🙂

    Попутно вынужденно разгонял оперативную память — FSB ведь одна, сами понимаете. Через год сменил платформу на АМД, приобрел оверклокерский (как мне тогда казалось) комплект памяти Kingston HyperX 1066 МГц, мать Gigabyte GA-MA790X-UD3P (кстати — великолепная материнка), ну и процессор PhenomII x 3 710 2600 МГц. Специально для разгона. Только тогда я уже начал почитывать (лишь почитывать и то лишь временами) сайт overclockers.ru

    Со временем, мать сменил на Gigabyte GA-890XA-UD3 — тоже отличная оверклокерская мать. Сейчас думаю — а почему сменил мать — северный мост в обоих случаях один и тот же 790Х, южный же с SB 750 изменился на SB 850. Ведь фактически — разницы не было.

    Перебрал три процессора, тупо покупая и продавая по очереди (в нашем городе до сих пор нету магазина, которая практиковала бы такую замечательную фичу как «moneyback») PhenomII x 3 710, один процессор PhenomII x 3 720ВЕ — и все это ради получения заветных как мне тогда казалось 4 ГГц. Не получилось. Как я сейчас понимаю, виной были первые ревизии PhenomII. Все они стабильно разлачивались до полноценных PhenomII x 4. Но, максимум частотного потолка у них был разный — от 3400 до 3700 МГц. Танцы с бубном вокруг биоса, напряжений и т.д. и т.п., в том числе и в режиме отключения нескольких ядер, не помогали. В итоге купил 6-ядерный свежевышедший и чуток уже скинувший цены PhenomII x 6 1090 BE. Вот он сразу без базара взял стабильные 4000 МГц при приемлемом напряжении. На 4100-4200 МГц в виндоус заходил, но стабильности не было. Кстати, для этого я сменил кулер на «народный» и очень популярный (да и сейчас вроде) тогда Scythe Mugen 2 Rev . B (спасибо тогдашнему голосованию на форуме оверклокерс.ру — » Лучший башенный кулер»).

    Получив заветные 4 ГГц на феном2, у меня несколько снизился интерес к разгону. И я подумал, что неплохо было бы перенестись на свежайший тогда сокет 1155 — и я, продав феном2, приобрел процессор Intel Core i 5 2500 K. К тому времени я сдружился с одним магазином и перебрал три таких процессора и нашел «тот самый проц», который давал стабильные 5 ГГц на воздухе.

    Для этого я заказал в этом же магазине топовую тогда матплату MSI P 67 A GD 80 (лишь через полгодика позднее вышел дорогущий Big Bang-Marshal). Но потом увидел замечательную плату — ASRock P 67 Extreme 6 ( B 3) — сразу взял ее — только из-за 10 внутренних сата-портов (у меня тогда как раз 10 штук 3,5″-хардов подкопилось). Опять же там были великолепные кнопки clear _ cmos , power , reset (а MSI GD80 я продал). Также в том же самом магазине я заказал и взял тогдашний лучший кулер в мире =) ThermalRight Silver Arrow — который и сейчас лучший, если навесить на него пару-тройку TR TY -150. Поскольку стабильные 5 ГГц (при рекомендуемых 1,40 В) уже были покорены, я поставил процессор на «экономичные» 4200 МГц при 1,32 В. Что странно, через полгодика он перестал держать 5 ГГц, несмотря на колдования -копания в биосе. Ну да ладно — бывает, я подумал и благополучно забыл об этом.

    Потом, со временем, я взял для тестов Noctua NH D 14, TR Archon, ну и Zalman CNPS 10 X Flex, «для референсу», так сказать. И написал Три короля.

    Со временем добыл еще Архонтов, итого их у меня стало пять. Одолжил в магазине еще пару штук — итого стало семь.И написал Сравнение семи Архонтов.

    А потом несколько людей написали мне, что неплохо было бы осветить тему разгона процессоров феном2. Вот об этом и пойдет речь.

    Итак — вернемся же к нашим баранам феномам.

    Итак, у вас есть процессор феном2 х4 965ВЕ. Напомню ,что буквы ВЕ означают Black Edition, то есть разблокированные в сторону увеличения множители, главным образом — CPU и CPU/NB.

    Также у вас в обязательном порядке должен быть хороший процессорный кулер и хорошая материнская плата. Это необходимые условия для безопасного и стабильного разгона. Особенно это важно, при большой нагрузке на процессор в течение длительного времени.

    ИМХО, подходит ли тот или иной кулер для разгона, можно определить двумя способами:

    — по отзывам пользователей эти девайсов на различных сайтах (например, здесь — http://market.yandex.ru/);

    — по обзорным/сравнительным статьям на многочисленных оверских сайтах (например, здесь — http://www.overclockers.ru/reviews/cooler/).

    Определить, подходит ли материнская плата к разгону можно по-чайниковски навскидку — по присутствию/отсутствию радиаторов на цепях питания, также называющихся мосфетами (полевыми транзисторами, полевиками). Также пригодность матплаты к разгону прямо можно определить по числу фаз питания процессора. Чем больше — тем лучше.

    Также необходим БП с несколько избыточной мощностью — поскольку после разгона процессор начинает потреблять больше энергии. Подробнее об этом я высказался здесь. Настоятельно рекомендую ее прочитать, во избежание возникновения «лишних» вопросов.

    Разгонять проц, по идее, очень легко. У нас есть процессор феном2 х4 965ВЕ, у которого номинальный множитель равен 17 и, следовательно, номинальная тактовая частота равна 17 х 200 МГц = 3400 МГц. Номинальное напряжение процессора при этом — 1,40 В.

    Для разгона процессора есть два пути: по шине и по множителю. О них подробнее ниже.

    1. Разгон по шине. Как делать?

    По номиналу частота шины равна 200 МГц. Увеличивая ее, мы можем увеличить итоговую частоту процессора. Например, увеличим с 200 МГц до 230 МГц. Тогда при номинальном множителе проца, равном 17, имеем итоговую частоту в 17 х 230МГц = 3910 МГц. И мы получили прирост в 3910-3400 = 510 МГц.

    Но, просто так процессор на своем номинальном напряжении (равном 1,40 В) эту частоту в 3910 МГц не возьмет — тупо не хватит питания процессору — чтобы работать на этой частоте. Поэтому приходится немного увеличивать напряжение. Я частоту в 3910 МГц взял лишь в качестве примера, поскольку для каждого процессора потолок разгона индивидуален, равно как и напряжение, при котором проц возьмет эту частоту.

    Возьмем три одинаковых процессора — , допустим, первый из них легко возьмет 4 ГГц, при напряжении 1,46 В.

    Второй процессор, также допустим, осилит 4 ГГц лишь при сильном «кочегаривании» — напряжении, равном 1,50 В.

    А третий процессор, допустим, возьмет максимум 1,38 ГГц — как бы ни мы увеличивали напряжение.

    Вывод: разгон — это лотерея. Потенциал разгона у каждого процессора — свой.

    Перед разгоном следует, через биос, выключить все энергосберегающие функции. Эти функции биос работают на автомате, самостоятельно выставляя напряжение питания процессоров и его частоту. Цель этих энергосберегающих технологий — сберечь электроэнергию в состоянии простоя компа, путем уменьшения множителя до 4 (4 х 200 МГц = 800 МГц), так и подаваемого на проц напряжения, следовательно, снижая общее энергопотребление системы.

    Нередки случаи, когда разогнанный процессор работал некорректно из-за этих функций. Поэтому их следует выключить.

    В биосе они скрываются под именами Cool n quiet, а также C 1 E — их следует поставить из [enabled] в положение [disabled].

    1.1. Методика разгона по шине

    1. Заходим в биос. Сбрасываем все на дефолт клавишей F2 или F5 или F8 или F9 и т.д. — у каждой матплаты по-своему. Сохраняемся и выходим.

    2. Заходим в биос.

    Смотрим ту часть, которая отвечает за разгон. В моем случае все выглядит таким образом:

    Запоминаем (новичкам можно и на бумажке записать) эти цифры:

    Current CPU Speed — текущая частота процессора.

    Target CPU Speed — частота процессора, которую мы задаем на данный момент.

    Current Memory Frequency — текущая частота оперативной памяти.

    Current NB Frequency — текущая частота встроенного в процессор контроллера памяти и кэш памяти третьего уровня (L3), его еще называют CPU/NB. Именно эта частота решает, с какой скоростью будут «разговаривать» процессор и оперативная память. Частоту CPU/NB тоже можно разогнать — и прирост от нее более заметный, нежели при аналогичном разгоне самого процессора.

    Current HT Link Speed — текущая частота шины Hyper Transport (далее — HT), которая соединяет северный мост и процессор. Хотя изначально реальные частоты CPU/NB и HT равны — эффективная скорость (точнее — пропускная способность) у шины HT настолько большая (5,2 миллиардов посылок в секунду), что разгон ей даже и не нужен.

    К тому же ее архитектура такова, что частота HT не может быть выше частоты CPU/NB. Поэтому следует разгонять только CPU/NB, а частоту HT оставляют на номинале — 2000 МГц.

    3. Теперь начинаем фиксить необходимые параметры:

    AI Overclock Tuner — из [Auto] ставим в [Manual], то есть автоматический разгон переводим в ручной режим. Это позволяет нам управлять частотой шины.

    CPU Ratio — множитель проца переводим из [Auto] в [17], при помощи клавиш «плюс» и «минус». То есть фиксируем/закрепляем номинальный множитель — чтобы «случайно» биос автоматом не изменил его.

    CPU Bus Frequency — шину проца из [Auto] ставим [200] — это номинальные 200 МГц.

    PCI E Frequency — шину PCI-E фиксим на номинальных 100 МГц.

    Memory Frequency — частоту памяти фиксим на родных 1333 МГц.

    CPU / NB Frequency — частоту фиксим на родных 2000 МГц.

    HT Link Speed — также фиксим на родных 2000 Мгц.

    CPU Spread Spectrum — ставим в [Disabled] — отключаем фичу, которая снижает ЭМИ от компьютера, это дает стабильность при разгоне. Почему — читаем.

    PCI E Spread Spectrum — тоже ставим в [Disabled] — чисто для перестраховки.

    EPU Power Saving Mode — энергосберегающая технология фирмы Asus, позволяющая регулировать энергопотребление компонентов матплаты. Как я писал выше — в состоянии разгона — всякие «энергосберегалки» — это зло, поэтому ставим ее в [Disabled].

    Затем идут регулировки напряжений (подраздел Digi + VRM) — здесь трогаем только те, которые непосредственно отвечают за управление напряжением процессора. Это:

    CPU Voltage Frequency — переводим из положения [Auto] ставим в [Manual] — для ручной регулировки вольтажа.

    CPU & NB Voltage -переводим из [Offset Mode] в [Manual Mode] — это позволяет вручную прямо указать напряжение проца. В режиме же [Offset Mode] напряжение проца указывается смещением (плюс или минус) относительно номинального напряжения, коим является, как на фотке четко видно — 1,368 В. А такая регулировка нам это ни к чему — только больше путает новичков.

    CPU Manual Voltage — при помощи клавиш «плюс» и «минус» фиксим номинальное напряжение — 1,368750 В.

    Вот таким образом мы зафиксировали все номинальные напряжения компьютера, чтобы никакая автоматика биоса уже не смогла их изменить. Сохраняем биос и перезагружаемся.

    4. Заходим в ОС.

    Скачиваем и устанавливаем самые свежие/последние версии программ:

    CPU Z — для мониторинга состояния процессора — множителя и итоговой частота процессора, а также его напряжения.

    Core Temp — для мониторинга температуры процессора.

    Lin Х — программа для создания максимальной нагрузки процессору. Эта программа нагружает процессор системой линейных алгебраических уравнений, которые равномерно под завязку нагружают все ядра процессора, поскольку хорошо распараллеливаются.

    Для более-менее точного тестирования стабильности процессора на указанной связке [частота CPU — напряжение CPU ] в принципе достаточно в настройках программы LinX указать 10 прогонов, с использованием более 50% объема от общей оперативной памяти. При 8 Гб памяти я рекомендую использовать 5 Гб памяти.

    На картинке снизу я указал, как вы можете заметить, 10 прогонов при использовании 1 Гб памяти (1024 Миб). МиБ ( мебибайт) — это тот же российский мегабайт — 2 20, но по стандарту по стандарту МЭК. Так что разницы нет и бояться не стоит.

    5. Открываем CPU-Z, Core Temp и Linx. Окна их ставим рядом так, чтобы они не мешали друг другу.

    Запускаем LinX в 10 прогонов.

    И смотрим, до скольки максимум прогревается процессор. Запоминаем производительность процессора в Гфлопс.

    6. Заходим в биос.

    И увеличиваем CPU Bus Frequency c 200 до 210 МГц.

    Как можно заметить параметр Target CPU Speed одновременно увеличивается до 3570 МГц. Т.е. мы разогнали проц до этой частоты с номинальных 3400 МГц.

    Одновременно с этим растут и частоты памяти, CPU/NB и HT.

    Память — 1399 МГц.

    CPU/NB и HT — по 2100 МГц.

    Частоты памяти, CPU/NB и HT несильно отличаются от номинальных — поэтому их не трогаем.

    Под словом » несильно отличаются» подразумеваются, что они попадают в промежуток (+/-) 100 МГц от номинальных частот.

    Сохраняемся и перезагружаемся.

    7. Заходим в ОС.

    Запускаем LinX в 10 прогонов.

    И смотрим, до скольки максимум прогревается процессор. Запоминаем производительность процессора в Гфлопс.

    8. Заходим в биос.

    И увеличиваем CPU Bus Frequency c 210 до 220 МГц.

    Как можно заметить параметр Target CPU Speed одновременно увеличивается до 3740 МГц. Т.е. мы разогнали проц до этой частоты с номинальных 3400 МГц.

    Но — одновременно с этим растут и частоты памяти, CPU/NB и HT.

    Память стала 1466 МГц.

    CPU/NB и HT стали по 2200 МГц.

    Поэтому чтобы частоты памяти сильно высоко не «задралась» относительно номинальных 1333 МГц, уменьшаем ее как на картинках ниже (также это можно проделать клавишами плюс и минус) до 1172 МГц.

    А частоты CPU/NB и HT таким же макаром образом снижаем до приемлемых 1980 МГц. Напомню, что номинальные частоты CPU/NB и HT равны 2000 МГц.

    Таким образом, при разгоне через шину, мы постоянно должны следить, чтобы частоты памяти CPU/NB и HT не сильно далеко уходили от номинальных. Почему — объясню позднее.

    Сохраняемся и перезагружаемся.

    9. Заходим в ОС.

    Запускаем LinX в 10 прогонов.

    И смотрим, до скольки максимум прогревается процессор. Запоминаем производительность процессора в Гфлопс.

    10. Заходим в биос.

    И увеличиваем CPU Bus Frequency c 220 до 230 МГц.

    Как можно заметить параметр Target CPU Speed одновременно увеличивается до 3910 МГц. Т.е. мы разогнали проц до этой частоты с номинальных 3400 МГц.

    Одновременно с этим растут и частоты памяти, CPU/NB и HT.

    Память — 1225 МГц.

    CPU/NB и HT — по 2070 МГц.

    Частоты памяти, CPU/NB и HT несильно отличаются от номинальных — поэтому их не трогаем.

    Сохраняемся и перезагружаемся.

    11. Заходим в ОС.

    Запускаем LinX в 10 прогонов.

    И смотрим, до скольки максимум прогревается процессор. Запоминаем производительность процессора в Гфлопс.

    12. Заходим в биос.

    И увеличиваем CPU Bus Frequency c 230 до 240 МГц.

    Как можно заметить параметр Target CPU Speed одновременно увеличивается до 4080 МГц. Т.е. мы разогнали проц до этой частоты с номинальных 3400 МГц.

    Но — одновременно с этим растут и частоты памяти, CPU/NB и HT.

    Память стала 1279 МГц. Ее не трогаем, поскольку она в входит в промежуток 1333 МГц (+/-) 100 МГц.

    CPU/NB и HT стали по 2160 МГц.

    Частоты CPU/NB и HT снижаем до приемлемых 1920 МГц. Напомню, что номинальные частоты CPU/NB и HT равны 2000 МГц.

    Таким образом, при разгоне через шину, мы постоянно должны следить, чтобы частоты памяти CPU/NB и HT не сильно далеко уходили от номинальных. Почему — объясню позднее.

    Сохраняемся и перезагружаемся.

    13. Заходим в ОС.

    Опа! Вдруг возникает синий экран смерти — это означает одно — для данной частоты процессора ( 4080 МГц) выставленного процессорного напряжения в биос (по п.3) — 1,368750 Вне хватает.

    Нажимаем кнопку reset и перезагружаемся.

    14. Заходим в биос.

    По п.3 находим параметр CPU Manual Voltage — и снова при помощи клавиш «плюс» и «минус» повышаем и фиксим напряжение — 1,381250 В.

    Сохраняемся и перезагружаемся.

    Продолжение — завтра.

    Источник: http://dnevniki.ykt.ru/%D0%90%D0%9C/527749

    MSI гарантирует лучший разгон заблокированных процессоров Intel на своих материнских платах B460 и H410

    MSI гарантирует лучший разгон заблокированных процессоров Intel на своих материнских платах B460 и H410

    Некоторое время назад компания ASRock представила технологию Base Frequency Boost (BFB) для своих материнских плат на новейших чипсетах Intel Z490, H470, B460 и чипсетах предыдущего поколения — Z390 и B365. Технология BFB позволяет «разгонять» процессоры Intel с заблокированным множителем за счет увеличения пределов энергопотребления процессора на первом уровне Power Level (PL1). Некоторое время технология оставалась уникальной и, конечно, множество пользователей, нацеленных на сборку бюджетных систем с процессорами Intel, заранее остановили свой выбор на платах ASRock. Конкуренты поняли это и представили свои вариации BFB. Компания ASUS представила технологию ASUS Performance Enchancement (APE), а MSI не стала придумывать громкое название, а просто заявила, что ее платы обеспечивают лучшее управление уровнями PL с помощью настроек Power Limit Setting.

    Свежие слайды из презентации MSI (представленные Hassan Mujtaba в своем twitter @hms1193), посвященной Power Limit Setting, показывают, что компания предлагает лучшую технологию среди конкурентов. В презентации MSI делает акцент на том, что продукты ASRock поддерживают увеличение PL1 только до 125 Вт, а среди продуктов ASUS только одна модель может похвастаться возможностью повышения PL1 до 210 Вт, остальные ограничены 125 Вт. В свою очередь MSI предлагает четыре материнские платы с возможностью увеличения границ энергопотребления в режимах PL1 и PL2 до 125 Вт и 180 Вт соответственно, а более продвинутые решения MSI позволяют увеличить энергопотребление до 255 Вт.

    Повышение лимитов PL1/PL2 до 255 Вт позволило удержать частоты Core i9-10900 в стресс-тесте Prime95 AVX на уровне 4,4…4,5 ГГц, что на 700 МГц выше по сравнению с работой процессора на лимитах 125/180 Вт. В этих же условиях Core i7-10700 стабильно удерживал частоту 4,6 ГГц, что на 600 МГц выше частоты при лимитах PL1/PL2, ограниченных до 125/180 Вт. Повышение лимитов для Core i5-10600 позволило избежать редких провалов частот.

    В список материнских плат, поддерживающих увеличение PL до 255 Вт вошли:

    • MAG B460 Tomahawk
    • MAG B460M Mortar и (WIFI)
    • MPG B460I GAMING EDGE
    • H410I PRO WIFI

    Модели, поддерживающие увеличение PL до 180 Вт:

    • MAG B460M BAZOOKA
    • B460M-A PRO
    • H410M-A PRO
    • H410M PRO

    Источник: http://pcprofe.ru/blog/msi-garantiruet-luchshij-razgon-zablokirovannyh-protsessorov-intel-na-svoih-materinskih-platah-b460-i-h410

    Как разогнать видеокарту для майнинга Эфира (Ethereum)

    Монета Ethereum майнится на алгоритме Dagger Hashimoto, он же Ethash. В память видеокарты загружается массивный DAG-файл — блок данных, необходимых для расчётов. Объём DAG-файла на данный момент приближается к отметке в 3ГБ и увеличивается на 8МБ каждые 30.000 блоков или 10 с половиной дней.

    Алгоритм Dagger Hashimoto предполагает большое число вычислений внутри видеопамяти, поэтому чем выше скорость памяти, тем выше скорость этих вычислений. Разгон ядра не увеличивает хешрейт, но повышает электропотребление. Разгоняйте видеопамять, частоту ядра можно, наоборот, понизить.

    Под алгоритм Dagger Hashimoto сложно сделать специализированный ASIC-майнер из-за потребности в больших объёмах и скоростях видеопамяти. Значит монету Эфириум можно майнить только на видеокартах.

    Какие частоты поднимать?

    Dagger Hashimoto положительно отзывается на рост частоты видеопамяти. Частота ядра настолько незначительно влияет на доходность, что её можно, наоборот, понижать, чтобы уменьшить электропотребление и нагрев чипа.

    Как выставить правильную частоту видеопамяти?

    1. Узнайте производителя видеопамяти

    Посмотрите в приложении GPU-Z производителя видеопамяти.

    • Samsung разгоняются на +700 и более мегагерц;
    • Micron прибавит от +500МГц;
    • Hynix, к сожалению, часто разгоняется всего на 200-400МГц.

    Вне зависимости от производителя вам может повезти чуть больше или чуть меньше. Ориентируйтесь на значения выше, как на пример.

    2. Запустите стресс-тест

    Запустите стресс-тест в программе FurMark. Он нагрузит видеокарту на 100%. Это позволит вам проверить стабильность карты в боевых условиях.

    3. Последовательно поднимайте частоту памяти

    Для разгона видеокарт рекомендуем программу MSI Afterburner. Она работает со всеми видеокартами от любых производителей.

    Незначительно поднимите частоту видеопамяти на 50МГц и примените настройки.

    • Визуальные артефакты на экране;
    • Windows закроет стресс-тест;
    • Появится уведомление, что видеодрайвер перестал отвечать;
    • Экран станет полностью белым или полностью чёрным;
    • Синий экран смерти.

    Не волнуйтесь! По умолчанию MSI Afterburner не запускается вместе с Windows и не применяет автоматически настройки при следующем запуске компьютера. После перезагрузки компьютер будет работать на стандартных частотах.

    Запомните частоту, на который вы столкнулись с нестабильностью и выставьте частоту на 50МГц ниже. Например, если вы поставили +620МГц и заметили визуальные артефакты, то понизьте частоту до +570МГц.

    4. Проверьте стабильность майнинга

    Оставьте компьютер майнить непрерывно минимум на сутки и проверьте стабильность по чеклисту:

    • Компьютер не перезагружается самостоятельно и не зависает в произвольные моменты;
    • График загрузки видеокарты ровный, без резкий скачков;
    • Отображаемая доходность стабильна — нет резких скачков между 5₽/день и 50₽/день, например;
    • Фактическая доходность за 3-7 дней совпадает с прогнозируемой.

    Если не получается выполнить все пункты, уменьшите разгон ещё на 50МГц.

    Уменьшайте разгон при любых подозрениях на нестабильную работу компьютера или при несовпадении начислений. Переразгон — самая частая причина нестабильного майнинга и несовпадающей доходности.

    Как уменьшить энергопотребление?

    Можно понизить потребление электричества и не потерять ни грамма производительности!

    Уменьшайте значение Power Limit в программе MSI Afterburner до тех пор, пока не начнёт уменьшаться доходность. Так вы ограничите максимальный уровень потребления электричества, а видеокарта самостоятельно установит нужные напряжения и частоты, чтобы укладываться в новые лимиты.

    Подробнее об энергопотреблении компьютера мы рассказали в видео «Как майнеру не переплачивать за электричество? Уменьшаем потребление видеокарт.»

    Что такое Power Limit?

    Power Limit — лимит потребления электричества, который тесно связан с величиной TDP, теплопакетом видеокарты.

    У GeForce GTX 1070 TDP равен 150Вт. На максимальной нагрузке при 100% Power Limit карта будет потреблять примерно 150Вт.

    Понижать power limit абсолютно безопасно. Уменьшается нагрузка на подсистему питания видеочипа, уменьшается потребление и уменьшаются температуры.

    Какие ещё есть способы повысить доходность?

    Для видеокарт AMD Radeon RX 4xx-5xx

    Измените тайминги видеопамяти через Polaris Bios Editor и перепрошейте биос через AtiWinFlash. Об этом у нас есть отдельная статья.

    Для видеокарт NVIDIA GeForce GTX 1080, 1080Ti, Titan X (Pascal), Titan Xp

    Воспользуйтесь приложением ETHlargement Pill в паре с разгоном видеопамяти, чтобы получить до 35Mh/s на GTX 1080, 55Mh/s на GTX 1080Ti и до 65Mh/s на Titan Xp. Подробнее в статье про «таблетку» 💊.

    Что-то пошло не так? Поможем! 🚑

    Задавайте вопросы в сообществах Криптекса ВКонтакте и в Телеграме. Наши опытные пользователи обмениваются опытом и помогают друг-другу в трудных ситуациях. Обсуждайте железо, разгон и делитесь своими идеями!

    Или напишите Криптексу напрямую, у нас большой опыт разгона 💪🏻

    • На сайте;
    • В сообщения группы ВК;
    • Прямиком на почту support@kryptex.org;
    • В личку в телеграме.

    Троллбокс

    Троллбокс — это окошко чата, которое часто можно встретить в новостях и базе знаний. Вся информация, публикуемая в этом чате должна восприниматься с большой долей скептицизма, но уверяем, тут есть много полезного и интересного.

    Источник: http://www.kryptex.org/ru/articles/ethereum-gpu-overclocking-ru

    Разгон видеокарт Nvidia и AMD для максимального хэшрейта при майнинге

    Разгон – это принудительное повышение характеристик оборудования для увеличения его эффективности. В случае с видеокартой её мощность напрямую зависит от двух параметров: тактовой частоты графического процессора и тактовой частоты видеопамяти. Именно их мы сегодня с вами и попробуем разогнать.

    Отдельное слово хочется сказать про мощность и блок питания. Видеокарта является самой прожорливой составляющей ПК с точки зрения расходования мощности. Если в случае с разгоном процессора его энергопотребление остается фактически на том же уровне, то с видеокартой ситуация в точности да наоборот, энергопотребление, хоть и не намного, но возрастает (сложно назвать конкретные числа, все зависит от модели и разгонного потенциала вашей видеокарты). Отсюда и следует вывод, что блок питания необходим несколько мощнее, чем заявлено в рекомендации к GPU.

    Часто спрашивают: Может ли видеокарта сгореть при разгоне?
    Ответ: Нет, если не повышать напряжение, подаваемое на графический процессор. В случае сбоя, карточка просто сбросит все частоты до базовых значений и продолжит работать.

    Другие компании типа MSI, Asus, Gigabyte, Zotac, Palit и др. покупают уже, как правило, готовую, разработанную компанией Nvidia видеокарту и модифицируют ее по своему усмотрению. Кто-то понижает тактовую частоту ядра, кто-то наоборот разгоняет, кто-то меняет разъемы для подключения устройства вывода (монитора), кто-то делает прочие модификации.

    В итоге мы получаем, что одна и та же модель видеокарты может стоить по-разному и работать на разных базовых частотах. Отсюда следует вывод, что оверклок – дело сугубо индивидуальное и зависит конкретно от вашей модификации. Для приблизительного понимания производительность разных моделей GPU вы можете воспользоваться калькулятором производительности и доходности от WhatToMine.

    Навигация по материалу:

    Пошаговая инструкция по разгону видеокарт Nvidia

    Всем известно, что можно выжать больше мегахешей с видеокарт, поэтому многие решают сделать небольшой overclock. Мы рассмотри самые безопасные и оптимальные варианты разгона для карт от Nvidia.

    Разгон Nvidia GeForce GTX 1060

    • GPU-Z –программа для мониторинга всех показателей видеокарты.
    • MSI Afterburner – программа для разгона видеокарты и любой бенчмарк.
    • Бенчмарки – категория программ для тестирования производительности ПК в стрессовой нагрузке. В моем случае это будет Furmark.
    • https://www.techpowerup.com/gpuz
    • https://ru.msi.com/page/afterburner

    при этом выходит ошибка драйвера «Видеодрайвер перестал отвечать и был успешно восстановлен».

    Разгон Nvidia GeForce в MSI Afterburner на примере GTX 1070

    GTX 1070 FE пользуется таким же 8-пиновым PCI-E коннектором, как и 1080. Даже при том, что предел мощности TDP был снижен до 151W и ограничения позволяют рост только на 12% в сравнении с настройками TDP по умолчанию (169W максимум TDP). Также есть программный инструмент для быстрой модификации файлов видео BIOS, но не так просто оказалось изменить TDP ограничения в BIOS и другие настройки, такие, как частоты и вольтаж, чтобы получить некоторые не документированные возможности от карт Founders Edition.

    Мы уже знаем, что графические процессоры GTX 1080 и GTX 1070 показывают хорошие способности к разгону и вы можете добиться от них хорошей производительности, если вас не беспокоит перерасход электричества.

    Мы попробовали в деле карту GTX 1070 Founders Edition и изменили все настройки, кроме вольтажа ядра, на максимум, получив: Напряжение + 12%, Частота ядра + 210 MHs, Частота памяти + 830 MHs, и это были максимальные настройки, при которых видеокарта работала стабильно в режиме круглосуточного майнинга на нашей тестовой карте, результаты которой приведены ниже.

    Заметим, что результаты для каждой карты могут отличаться, и вам придётся экспериментировать, прежде чем найдёте оптимальную производительность. Похоже, что карты GTX 1070 FE остаются тихими, несмотря на разгон.

    Рост производительности, который мы получили благодаря разгону карты Nvidia GeForce GTX 1070 Founders Edition, почти достиг показателей GTX 1080 FE без разгона. Если брать рост производительности по хеширующей мощности, то она примерно на 12-14% по сравнению с настройками по умолчанию увеличивается, а ещё лучших результатов можно достигнуть с увеличением вольтажа. Однако здесь следует быть осторожным, чтобы вписаться в ограничения TDP

    Интересно заметить, что карта GTX 1070 FE показывает лучшую производительность в алгоритме NeoScrypt (668 KHS по умолчанию/771 KHS после разгона) чем у 1080 FE, но в этом отношении её опережают другие карты, например, такие, как GTX 980 Ti. Кажется, что используемая здесь медленная видеопамять GDDR5 показывает лучшую производительность на чувствительных к памяти алгоритмах, в отличие от более быстрой памяти GDDR5X, которая используется в 1080. Однако GTX 1070 потребуются дополнительные программы, чтобы запустить NeoScrypt.

    Как уже заметили, графический процессор Pascal, который установлен на GTX 1080 и GTX 1070 при майнинге эфириума под Windows показывает очень низкую хеширующую мощность, поэтому, пока нет исправления драйверов, для майнинга эфириума этой картой лучше перейти на Linux. Все остальные алгоритмы, которые мы протестировали, хорошо работают под Windows 7 и 10, так что нет смысла переходить на Linux, особенно если у вас нет опыта с ним.

    Разгон через Nvidia System Management Interface (режим P0 — высший приоритет)

    Благодаря консольной утилите Nvidia System Management Interface (nvidia-smi) можно принудительно настроить ваши GPU для работы в P0 режиме (высший приоритет), вместо установленного по умолчанию для работы с Compute приложениями режима P2, что увеличивает скорость майнинга.

    Напоминаем, что утилита nvidia-smi является частью драйверов для видеокарт от Nvidia и хранится в «С:\Program Files\NVIDIA Corporation\NVSMI\» если у вас установлена ОС Windows. Так что вам потребуется запустить командную строку (CMD) и перейти с помощью нее в эту папку для того, чтобы у вас была возможность выполнять команды. Для начала вам потребуется выполнить следующую команду для проверки текущего P-состояния ваших GPU.

    nvidia-smi -q -d PERFORMANCE

    Обратите внимание, что P режим меняется динамически, поэтому, для проверки, перед выполнением команды вам понадобится запущенный в режиме майнинга Ethminer, для того, чтобы увидеть P-режим при активной нагрузке.

    После проверки максимального состояния питания, которое ваши Nvidia GPU используют при выполнении Compute приложений, которые используют OpenCL или CUDA, вам нужно проверить максимальные частоты, которые видеокарта использует в состоянии P0. Вы сможете сделать это с помощью следующей команды:

    nvidia-smi -q -d SUPPORTED_CLOCKS | more

    После чего вы увидите список всех поддерживаемых частот в различных режимах питания, которые использует ваша видеокарта. Нет необходимости проверять весь список, все что нужно отметить, это частоты для чипа и памяти в верхней части списка. В нашем примере мы будем использовать видеокарту GTX 970 от Gigabyte и нам нужны значения 3505 Мгц для видеопамяти и 1455 для чипа GPU. Далее мы заставим видеокарту принудительно использовать максимальные рабочие частоты в состоянии P0. Для этого выполните следующую команду:

    nvidia-smi -ac 3503,1455

    Имейте ввиду, что приведенная выше команда будет применять данные настройки ко всем GPU в системе, и как правило, это не должно составить проблем для большинства систем, поскольку, как правило, в них устанавливаются одинаковые видеокарты. Однако бывают случаи, когда риг собран на базе различных GPU, в этом случае вам понадобится настраивать каждый GPU по отдельности, добавляя ID карты при выполнении команды. Это делается путем добавления параметра -i, который может быть числом, начиная с 0 для первого в системе графического адаптера, и так далее. В примере, показанном на скриншоте выше, мы имеем в системе два различных GPU, поэтому нам требуется установить P0 состояния для каждой из видеокарт по отдельности двумя различными командами.

    nvidia-smi -i 0 -ac 3503,1455 nvidia-smi -i 1 -ac 3503,1392

    Теперь узнаем, насколько удалось увеличить производительность при майнинге ethereum на Nvidia GPU, следуя инструкция приведенным выше. Это довольно легко проверить, сначала запустив майнинг Эфира до внесения изменений, а затем после. На видео карте Gigabyte Nvidia GTX 970 WF30C, которую мы использовали при написании данного материала, мы обычно получаем производительность в районе 17.31 MHS/sec при майнинге Ethereum, когда GPU находится в состоянии P2

    После внесения изменений нам удалось получить порядка 19.98 MHS/sec. Так что, это довольно интересный трюк с точки зрения повышения производительности майнинга Ethereum, при увеличении энергопотребления всего на 10 W, для Nvidia GPU.

    Разгон видеокарт AMD Radeon для майнинга

    Тут просто меняем значения таймингов оперативной памяти видеокарты, и алгоритм dagger hashimoto начинает работать куда быстрее. Для майнинга обычно покупают видеокарты RX 470 и RX 480. Они различаются количеством оперативной памяти и её частотой. При покупке видеокарт фирмы AMD Radeon серии RX, обращайте внимание именно на частоту оперативной памяти, если вы собираетесь майнить криптовалюту на dagger hashimoto алгоритме. Именно частота VRAM влияет на Хешрейт.

    Самая высокая частота видео памяти обычно у восьмигиговых видеокарт. Но соль в том, что мы покупаем видеокарту 4 гб с заниженной частотой оперативной памяти, чтобы её разогнать, плюс подмена таймингов. В совокупности это всё даёт неплохой буст. Можно заставить RX 470 4 gb работать на dagger hashimoto так же как и RX 480 8 gb OC edition.

    Софт для прошивки видеокарты

    1. ATIWinflash – Программа, которая сохраняет файл биоса из видеокарты, также прошивает видеокарту.
    2. Polaris Bios Editor – Программа, которая позволяет проводить манипуляции и корректировки значений в фале биоса, выгруженном из видяхи с помощью утилиты ATIWinflash.
    3. GPU-Z – Чисто посмотреть какой фирмы у нас микросхемы оперативной памяти видеокарты.

    Внимание: в программе GPU-Z Есть функция сохранения биоса видеокарты, не вздумайте им прошить GPU. Сразу говорю, что будет неудачный исход. Лечится только удалением драйверов и прошивкой видеокарты стоковым биосом.

    Порядок действий

    Запускаем ATIWinflash от имени администратора, и сохраняем биос видеокарты с расширением .rom, если у вас несколько видеокарт подключены одновременно к ферме через райзеры, то имейте в виду, ATIWinflash может отобразить только 3 видеокарты.

    Сделайте резервные копии биосов всех видео карт, чтобы если вдруг вы неудачно прошьёте, чтоб можно было откатиться. Запускаем утилиту Polaris Bios Editor, и перед нами появляется окно программы, открываем файл биоса той видеокарты, которую на данный момент решили прошить. Тут начинается самое интересное: в зависимости какая у вас видеокарты, определённым образом меняются тайминги. Давайте я приведу пример на своей видеокарте от фирмы MSI с видеочипом RX 480 на 4 гигабайта с частотой 7000 mHz.

    Копируем значение VALUE c 1500 и вставляем в 1625, 1750 и 2000. (Это только для RX480 4GB 7000mHz).

    Далее нужно сбавить частоту ядра, для майнинга ETH она не так уж и важна, если у вас RX, а не R7 или R9. В столбике GPU выравниваем значения ступеней частот ядра до 1150 mHz, и так же напряжение. Можно конечно это сделать в MSI Afterburner, но я предпочитаю так – в биосе настроить видеокарту. Это удобно если постоянно приходится пересобирать свои фермы, и на одной «отваливается» программная настройка видео карты. Так же в биосе видеоадаптера можно подправить значения, которые отвечают за скорость оборотов вентиляторов в столбике FAN.

    После манипуляций значений в файле биоса, сохраните его с названием типо «msi4804gbmod.rom», чтобы знать, что это модифицированный биос.

    Заходим в программу ATIWinflash, кликаем на кнопку Load Image, выбираем наш модифицированный биос, выбираем нужную видеокарту, если у вас их много подключено, и кликаем на кнопку Program.

    Оверклокинг памяти видеокарты AMD в MSI Afterburner

    Мы прошили видеокарту, теперь осталось только разогнать память. Заходим в MSI Afterburner и гоним память ползунком с 1750 до 2000.

    Убираем напряжение на ядро в самую крайнюю левую позицию ползунка. Хешрейт в дуал-майнинге Claymore 9.3 ETH+Decred достигает 28.5mh/sec и 857 mh/sec соответственно.

    Насколько это стабильно, вы узнаете через некоторое время, если видео драйвер не откажет, то разгон удался, если отпадёт, то убирайте оверклок. Энергопотребление Rx 480 4Gb в бусте под Эфир достигает 120 ватт по ядру и ещё 30-50 по памяти, в зависимости от разгона.

    Видео инструкции по разгону AMD RADEON RX 480 и RX 580

    На примере видеокарты для GPU майнинга – SAPPHIRE NITRO+ RADEON RX 480 8GB и криптовалюты Ethereum (ETH) на этом видеоролике вы можете увидеть покажем полный цикл действий, благодаря которым увеличивается хешрейт и, следственно, прибыль от майнинга, использовав следующие программы:

    • MSI Afterburner
    • ATI WinFlash
    • Polaris BIOS Editor
    • GPU-Z

    Изначально видеокарта выдавала 24,6 MH/s, при потреблении 227W. После прошивки BIOS, разгона видеокарты, и даунвольта – получены следующие показатели: 30,4 MH/s, при потреблении 178W. Такое соотношение хешрейта к энергопотреблению считается оптимальным.

    Видео инструкции по разгону Nvidia GTX 1060 и GTX 1070

    Источник: http://mining-cryptocurrency.ru/razgon-videokart-nvidia-i-amd-dlya-majninga/

    Разгон процессора через программу CPU-Z

    При помощи CPU-Z как разогнать процессор? Запрос довольно частый. Владельцам ПК необходимо получить полезную информацию, которая помогла решить подобную задачу. В статье ниже будут рассмотрены 2 примера, как при помощи ЦПУ-ЗЕТ правильно совершить разгон центрального процессора и что для этого нужно делать.

    Как разгонять процессор через CPU-Z

    Важно понимать, что разгон процессора через программу CPU-Z не осуществляться. Она используется для проведения тестирования и контролирования устройств в режиме реального времени.

    Важно! Точные статистические данные позволяют грамотно разогнать ЦП и избежать возможные риски возникновения перегрева и выхода из строя устройств.

    Способ 1 Разгон через БИОС

    С помощью БИОСА разогнать процессор можно следующим образом:

    1. Перезагрузить компьютер.
    2. При появлении первой заставки при включении нажать на кнопку F1 или Del.
    3. В открывшемся синем экране выбрать пункт Voltage или «Напряжение». Обратите внимание, что в зависимости от версии БИОСА название могут отличаться.
    4. В новой вкладке выбрать раздел с центральным процессором и нажать по кнопке «Редактировать».
    5. Увеличение тактовой частоты осуществляется при помощи повышения напряжения.
    6. Повысить базовую отметку напряжения на 1 -2 единицы.
    7. Сохранить результат перезагрузить ПК.

    После запуска системы необходимо отследить изменения и протестировать центральный процессор. В этом поможет владельцам ПК CPU-Z на русском. Важно провести тестирование и определить, нет ли сбоев в работе и экстренного нагрева процессора.

    Обратите внимание, что не все процессоры на ноутбуках и ПК поддерживают данную систему разгона. Перед выполнением таких действий настоятельно рекомендуется изучить подробно информацию о своём устройстве.

    Способ 2 Разгон через стороннее ПО

    Для разгона могут быть использованы сторонние программы. Лучше применять такое ПО как Core Temp или фирменную утилиту от Intel. Для проведения разгона следует выполнить следующие действия:

    1. Запустить программу разгона процессора.
    2. Выбрать пункт оверлокинг или увеличения тактовой частоты.
    3. Немного увеличить отметку от базовой.
    4. Сохранить результат.
    5. Провести тестирование через CPU-Z.

    Источник: http://cpu-z-free.ru/razgon-protsessora-cpu-z.html